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target tracking using kinematic models. 
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Dl 
On Blind Separation of Convolutive Mixtures of Independent Linear Signals in 

Unknown Additive Noise 1 2 

Jitendra K. Tugnait 

Abstract 

Blind separation of independent signals (sources) from their linear convolutive mixtures is considered. 

The various signals are assumed to be linear non-Gaussian but not necessarily i.i.d. First an iterative, 

normalized higher-order cumulant maximization based approach is exploited using the third- and/or 

fourth-order normalized cumulants of the "beamformed" data. It provides a decomposition of the given 

data at each sensor into its independent signal components. In a second approach higher-order cumulant 

matching is used to consistently estimate the MIMO impulse response via nonlinear optimization. In a 

third approach higher-order cumulants are augmented with correlations. For blind signal separation the 

estimated channel is used to decompose the received signal at each sensor into its independent signal 

components via a Wiener filter. Two illustrative simulation examples are presented. 

1    Introduction 
Consider a discrete-time FIR MIMO system with N outputs and M inputs given by 

L 

I 
1=0 

y(fc) =  ^Fiw(fc-Z) + n(fc)   =   [^(2)]w(fc) + n(fc)  =  s(fc) + n(Ä) (1-1) 

where T{z) = £?=oFi*~*'' y{k) = [yi(k)':y2(k)\-■ ■:.yN(k)]T, similarly for w(fc), s(fc) and n(fc), Wj(k) 

is the j'-th input at sampling time A:, yi(k) is the i-th output, m(k) is the additive measurement noise, 

and {F(} is the system matrix impulse response (IR). We allow all of the above variables to be complex- 

valued. We impose the following conditions: 

(AS1) N > M, i.e. there are at least as many outputs as inputs. 

(AS2) Rank-^-z)} = M for any \z\ = 1. 

(AS3) The vector sequence w(fc) is assumed to be zero-mean and i.i.d. both temporally and spatially. 

Also assume that fourth-cumulant or the third-cumulant of w(k) is nonzero. 

(AS4) The noise {n(fc)} is a zero-mean, stationary Gaussian sequence (with unknown correlation 

function) independent of {w(fc)}. Moreover, it is ergodic. 

Let the transfer function of individual subchannels be denoted by Fij(z) (transfer function between the 

i-th output and j-th input) having the IR {fij{k)}. 

^he author is with the Department of Electrical Engineering,  Auburn University, Auburn,  AL 36849-5201, USA. 
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The problem of blind separation of independent linear signals from their convolntive mixtures leads 

to the above mathematical model. In the convolutive mixture problem, M independent non-Gaussian 

signals Xj(k) (j = 1,2, • • •, M) are observed at N sensors as 

y(Jfe) =  [U(z)]x(k) + n(Aj) (1-2) 

where U(z) represents the convolutive mixture. Assume that 

x(fc) =  [V(z)]vr(k) (1-3) 

where w(Jfe) satisfies (AS3) and V{z) is diagonal. From (1-2) and (1-3), we obtain (1-1) where T{z) = 

U(z)V(z) and we have used (if needed) an FIR approximation. Past work on separation of convolu- 

tive mixtures may be categorized into several classes: time-domain approaches ([2], [6], [8], [11], [12]), 

frequency-domain approaches ([3]), adaptive (recursive) approaches ([6], [8], [11]), and non-recursive 

(batch) approaches ([2], [3], [12]). In this paper we present time-domain non-recursive (batch) ap- 

proaches. Quite a few of existing approaches are limited either to M = N = 2 ([3], [8]) or to M - N 

([2],[6], [12]). In this paper we consider a general case of N > M with M arbitrary. 

Let T^\z) denote the i-th column of F(z). In our formulation of blind convolutive signal sepa- 

ration problem, we are interested in decomposing the observations at various sensors into its indepen- 

dent components, i.e. in estimating [^(z^w^k) for i = 1,2, • • -,M given {y(fc)> without having a 

prior knowledge of F(z). Our main approach is to first estimate T{z) (Sees. 2-4) and then estimate 

[^(z^w^k) via Wiener filtering (Sec. 5). Others have pursued a different approach as follows. Sup- 

pose that there exists a MIMO dynamic system £{z) with N inputs and M outputs such that the overall 

M X M system T(z) := £(z)U(z) decouples the source signals. Following the 2 X 2 case considered in 

[3], this implies that we must have (Tij(z) denotes the ij-th. element of T(z)) 

Tij(z)   =0   for   i^ij ^ 

^ 0   for   i = ij 

where i = 1,2, ■•-,Af; j = 1,2, • • -,M and ij e {1,2,---,M} such that ij ^ it for j ± I. That is, 

in every column and every row of T(z) there is exactly one non-zero entry. This approach occurs 

in the seminal paper [1] and others ([2],[3],[8] and references therein). By discarding all but one of 

the N entries of the iV-vector [^(z^w^k), we can get the solution specified by (1-4). The idea 

of decomposition of y(fc) into its independent components [^(z^w^k) to achieve source separation 

has appeared in [7] using higher-order statistics and in [11] using second-order statistics. In [11] it is 

required that rank{W(z)} = M for any z (including z = oo but excluding z = 0) whereas our (AS3) 

leads to rank{W(,z)} = M only for \z\ = 1; our examples in Sec. 6 do not satisfy the assumptions of [11]. 

On the other hand, [11] does not require the signals {x(fc)} to be non-Gaussian or linear whereas our 

formulation relies crucially on {x(fc)} being linear non-Gaussian. 

The assumption of linear non-Gaussian sources allows one to treat the problem as a (blind) linear 

system identification problem using higher-order statistics. Therefore, existing results on blind system 



identification ([4], [5], [12] etc.) become quite relevant. In [5] (also [6]) a source-iterative, inverse-filter 

criteria-based approach has been developed. It was shown in [5] that the system matrix IR sequence 

{Fi} can be found up to a post-multiplication monomial matrix. The approach of [5] does not require 

knowledge of the model order (L in (1-1) ). However, it yields biased IR estimates in noise. One of 

the purposes of this paper is to investigate alternative approaches to remedy this drawback so that 

consistent channel estimates may be used for source separation given dynamic mixtures. We propose 

to use a cumulant matching approach [4]. Since higher-order cumulants of Gaussian processes vanish, 

cumulant matching has the potential of yielding unbiased estimates. Using output cumulants, closed- 

form solutions have been given in [4] (and references therein) under several restrictive conditions: given 

a finite impulse response {F;}fL0, model order L is known, and F0 and FL are both of full column rank. 

Quadratic cumulant matching has also been performed in [4] under the same restrictive conditions. 

Since cumulant matching results in a nonlinear optimization problem, selection of good initial guesses 

is crucial. In [4] this is accomplished by using the closed-form solution. In [12] it has been shown that 

if two models have identical output cumulants, then their transfer functions (hence impulse responses) 

are equivalent up to a monomial matrix. However, [12] offers no algorithms for model identification. 

In this note we utilize the results of the approach of [5] as an initial guess for cumulant matching and 

related approaches (see further remarks in Sec. 3.). Once the system IR has been estimated, we design 

an MMSE (minimum mean-square error) filter for signal separation in Sec. 5 using the estimated IR. 

2    An Iterative Solution Based on Inverse-Filter Criteria [5] 

Here we briefly review [5] whose analysis holds only for n(k) = 0. Let CUU4(w) denote the fourth-order 

cumulant of a complex-valued random variable w, defined as 

CUM4(™)  :=  cum4{w, w*,w,w*} =  £{H4} - 2[E{\w\2}]2 - \E{w2}\2. (2-1) 

We will use the notation 74™ = CUM4(wi(fc)) and a2
wi = E{\wi(k)\2}. Consider an 1 X N row-vector 

polynomial equalizer CT(z), with its j'-th entry denoted by Cj(z), operating on the data vector y(fc). 

Let the equalizer output be denoted by e(fc) = £ili Ci(z)yi(k). Following [5] consider maximization of 

the cost (an inverse-filter criterion) 

J42  :=  |CUM4(e(A0)| X [E{\e(k)\2}]-2 (2-2) 

for designing a linear equalizer to recover one of the inputs. It is shown [5] that when (2-2) is maximized 

w.r.t. C(z), then e(fc) is given by 

e(k) = dwjo(k-k0) (2-3) 

where d is some complex constant, k0 is some integer, j0 indexes some input out of the given M inputs, 

i.e., the equalizer output is a possibly scaled and shifted version of one of the system inputs. It has 

been established in [5] that under (AS1)-(AS3) and no noise, such a solution exists and if doubly- 

infinite equalizers are used, then all locally stable stationary points of the given cost w.r.t. the equalizer 

coefficients are also characterized by solutions such as (2-3). 



An iterative solution where we iterate on input sequences one-by-onc is summarized in Table 1. In 

practice, all the expectations in (T-l) are replaced with their sample averages over appropriate data 

records. It has been shown in [4] that 

w*(*) = £/<&(')"*(*-0 (2"4) 

I 

representing the contribution of {wjo(k)} to the z-th sensor: blind signal separation. 

Remark 1.      We may replace the cost (2-2) with ([5]) J32   :=   |CUM3(e(fc))|[£{|e(*OI2}]_1"S where 

CUM3(K;) := cum4{w,w*,w} = E{\w\2w}. The preceding discussion pertaining to (2-2) holds in this 

case with obvious modifications provided we replace the phrase "nonzero fourth cumulants" in (AS3) 

with the phrase "nonzero third cumulants."     □ 

Remark 2.      It has been shown in [5] that under the conditions (AS1)-(AS3) and no noise, the 

proposed iterative approach yields a transfer function A(z) which is related to T{z) via 

A(z) = f(Z)DAP (2"5) 

where D is an M X M "time-shift" diagonal matrix, A is an M X M diagonal scaling matrix, and P is 

an M x M permutation matrix    □ 

3     Cumulant Matching 

Define 

Cijkl(TUT2,T3) := cnm^y^y^t + n^ykit + ^^Ht + rs)}. (3-1) 

Let Cijki(r1,T2,T3\0) denote the relevant variable parametrized by 6 where 6 denotes the vector of 

all unknown parameters composed of the elements of Fj for I = 0,1, • • •, L > L. Furthermore, let 

Cijki(Tl,T2,T3) denote a consistent data-based estimate of Cijki(Ti,T2,T3) obtained by appropriate sam- 

ple averaging. It is easily seen that for (1-1), 

M    L 

Cijld(n,T2, T3\0)   =    E E HvmfUWjmi* + Tl)f^(t + T2)flm(t + ^)- (3-2) 
m=l t=0 

The cost function for parameter estimation via cumulant matching is given by 

^4:=    E    E E Y.\Ciikl{^^r3)-Cijkl{rx,T2,r3\^- (3-3) 
t,j,fc,f=l T!=0T2=0T3=0 

During minimization of (3-3), -yAwm (see (3-2) ) is kept fixed at its value obtained from Sec. 2 using 

(2-3). This indirectly fixes the scale ambiguity (A in (2-5)). The initial values of 9 are provided by the 

solution of Sec. 2. The choice of lags in (3-3) reflects the non-redundant region of support for cumulants 

of complex FIR processes [13]. Minimization of (3-3) ca,n be performed using gradient-based methods 

(as in [9]) and/or using software packages. For the results presented in Sec. 6 we used NL2SOL [14] 

with the option of numerical gradients so that explicit equations for gradients were not used. 



Remark 3. With Cijki(T1,T2, r3) replaced with its true value Cijki(T1,T2> T3\0O) in (3-3), it follows from 

[12] that under the conditions (AS1)-(AS4), minimization of (3-3) (under L > L) will yield a transfer 

function A(z) which is related to the true transfer function via (2-5). If Cijki(Ti,T2,T3) is a strongly 

consistent estimator of Cijki{Ti,T2,T3\60), then (global) minimizer of (3-3) will yield with probability 

one a transfer function satisfying (2-5) [4]. The problem is how to ensure global minimization of (3-3). 

Herein lies the value of the iterative approach of Sec. 2. Recall that the approach of Sec. 2 yields a 

consistent IR estimator only under vanishing measurement noise. 

4    Correlation and Cumulant Matching 

Let 6 denote 6 of Sec. 3 augmented with E{\wi(k)\2} (= o^), i = 1,2, ■•■,M. Define C^T) := 

E{yi(t + T)yj(t)} and let Cij(r|ö) denote Cij{r) parametrized by 6. Then 

Cij{T\e) = Em=il£off»m/<m(< + T)/;m(t). Let CtJ{r) denote a consistent data-based estimate of 

C{J(T). The cost (3-3) may be augmented with correlation matching to devise the cost 

N    L 

t,i=l r=l 

where the nonnegative scalar A in (4-1) is chosen to provide relative weighting between correlation and 

cumulant matching (as in [9] and [13] for scalar systems). Following [9] we choose 

T -1 
N L      L      TL 

* = A°      E     E E  E |^(-i,r2,r3) E E \^(r) (4-2) 
i1j,fc,i=lT1=0r2=0T3=0 J    Lt,j=lT=0 

where A0 > 0. By (4-2) A is invariant to any scaling of the data. For simulation results presented later, 

we picked A0 = 1. The initial values of parts of 9 that are common to 6 are selected as in Sec. 3. The 

initial values of a2
w -Q are obtained using (2-3) in a manner similar to that in Step (i) of Table 1. The 

cost (4-1) is useful when noise is white Gaussian (notice the exclusion of r = 0 in (4-1) ). It allows us 

to exploit the signal correlations at nonzero lags. It can be easily modified to incorporate a different 

prior knowledge such as known noise correlation etc. 

5    Blind Convolutive Signal Separation 

As noted earlier, our objective is to estimate [J*ü](z)wi{k) for t = 1,2, --^M given-{y(*)}. The 

solution of Sec. 2 provides a solution in the form of (2-4) but it is not necessarily an MMSE solution. 

We will now discuss other possible solutions, particularly when cumulant (or related) matching is used 

to estimate the (over-all) system transfer function. Let F[
I)
 denote the z-th column of Ft. Let ^l\z) 

and PP denote the estimates of T^{z) and F,W, respectively. We wish to design a linear MMSE filter 

iGi}f=o of length ^e + 1 to estimate yü)(Ä - d) given y(Z) for I = k, k - 1, • • •, k - Le where d > 0, 

yy>(Jfe)  :=  [^\z)]Wj(k) = £FpV<fc-0, (5"X) 
1=0 

f\k-d)  := £Giy(fc-0. (5"2) 



Both Le and the delay d are "pre-determined." Using the orthogonality principle [10], the normal 

equations for the MMSE estimator simplify to 

£ GtRyy(m -i) = al3 £ F^glm  = 4;H,i-m>     m = 0,1, -, i. (5-3) 
i=o fc=o 

where Ryy(m)  :=  £{y(i + m)yw(i)} {U denotes the Hermitian operation) and 

H,-m  :=  E^Fffif-m  -  EFSm-.FP  =  ^^{yy)(* + m-d)yW)w(fc)}- (^) 
fc=0 fc=o 

Note that a shift in the sequence {F^} leaves Hd_m unaffected. In order to obtain a data-based solution, 

we simply replace all the unknowns by their estimates. Since there is an inherent scale ambiguity in 

estimating the composite channel impulse response (cf. (2-5) ), we design the equalizer only up to a 

scale factor by omitting cr2j from (5-3). Denoting the so modified equalizer gains as G; (instead of G;), 

we have the solution 

[Go   GI    •••   GLe] = [fid   Hd_i    •••   Hd-L. ]#w (5-5) 

where Hd_m := ELO^F^, ^(m) := T"1 Ef=1y(t + m)yw(t)}, T =record length and 

■Ryy] = Ryy(j - i) = Ü'-th block of 7^yy. We assume that noise is such that the inverse in (5-5) 

exists, else a pseudo-inverse is warranted. The estimates F\l) above may be obtained by any of the 

previous approaches resulting in several possible choices. Under (AS3)-(AS4), Ryy(m) is a consistent 

estimator of Ryy(m). Therefore, if F,W is a consistent estimator (to within the ambiguities specified 

in (2-5)), then asymptotically we have the desired MMSE linear equalizer within a scale factor. This 

holds true for the approaches of Sees. 3 and 4, but not for that of Sec. 2. 

6     Simulation Examples 
We now present two simulation examples. In both the examples F0 is of rank 1 < M - 2. Cal- 

culation of ft-J (cf. (5-5)) was performed via singular value decomposition where all singular values 

< [0.001 X (largest singular value)] were neglected. This results in a pseudo-inverse. The various perfor- 

mance measures used (and their computational details) are shown in Table 2. Nonlinear optimization 

was done using NL2SOL with numerical gradients [14]. 

Example 1.     Consider a 2-input 3-output MA(2) system model resulting in JV=3 and M=2 in 

(1-1). Its 3 X 2 transfer function T(z) was chosen as 

0.9078 + 0.9078z-2 0.7471 + 1.1206z-1 + 0.7471z"2 

0.7263z-1 - 0.9078z-2     0.5603z-1 - 0.5603z-2 • t6"1) 

0. 0. 

The last row of (6-1) is identically zero signifying that the third 'sensor' is not receiving any information 

signal, just noise. The inputs {wj(k)} (j = 1,2) are mutually independent, zero-mean and i.i.d. such 

that wi(fc) is one-sided exponential with variance 0.64, and w2(k) is binary taking values ±1.0 with 



probability 0.5 each. The noise at the three sensors is mutually independent, zero-mean white Gaussian 

such that the noise power at the first sensor is nine times the noise power at the other two sensors, 

the latter being equal. Fig. 1 shows the "subchannel" amplitude spectra for the non-null subchannels 

where ij—th subchannel refers to Fij(z). 

The source-iterative approach of Table 1 was applied to inverse filter the data, to estimate the system 

IR, and to carry out signal separation. The length of the inverse filters was 15 samples per sensor/output. 

The average signal-to-noise ratio (SNR = iV"1 Y^f=i {E{\si(k)\2}/E{\nt(k)\2}}, s^k) = i—th component 

of s(k) in (1-1)) was taken to be 30 dB, 20 dB, 10 dB and 5 dB, respectively, in two sets of 50 Monte 

Carlo runs with varying record lengths of 1500 and 9000 samples per run, respectively. The results of this 

approach were used to initialize minimization of (3-3) with L = 3 and also of (4-1) with L = 3 and A0 = 1. 

The channel estimation errors (NMSE) are shown in Fig. 2. The average SINR (=(SINRi + SINR2)/2) 

values are shown in Figs. 3 and 4. To design the MMSE equalizer (5-5) we took Le = 14 (as for inverse 

filters in Table 1) and d = 7 in all cases. The approach labeled "inverse filter criterion" in Figs. 3 

and 4 uses (T-2) for source separation; other approaches use the MMSE filter of Sec. 5 based upon 

the estimated channel. It is seen that the inverse filter criteria based approach of Sec. 2 coupled with 

the MMSE filter with delay d = 7 performs quite well for signal separation at higher SNR's. At lower 

SNR's, cumulant matching does better. The benefits of introducing a delay in signal separation are 

clear from Figs. 3 and 4. The upper bounds shown in Figs. 3 and 4 were obtained by using the true 

values of Fz
(j) in (5-4) and estimated TZyy for upper bound (est. cor.) and true 1Zyy for upper bound 

(true cor.). 

Example 2. Consider a 2-input 3-output MA(6) system model resulting in N=3 and M-2 in 

(2-1). Its 3x2 transfer function T{z) was chosen as 

0.7426 + 0.7426z-2 0.5678 + 0.3407z-1 

0.4456z-1 + 0.7426z-2    -0.2385z-1 - 0.5678z-2 + 0.8176z-3 + 0.4088z"4 + 0.2385z-6     . (6-2) 

0.8911z-2 + 0.5941z-3    0.6814z-1 + 0.9085z-2 

This example has been taken from [5]. The inputs {wj(k)} (j = 1,2) are mutually independent, 

zero-mean and i.i.d. such that iui(fc) takes values ±0.8 with probability 0.5 each, and w2(k) takes 

values ±1.0 with probability 0.5 each. The noise at the three sensors is mutually independent, zero- 

mean white Gaussian such that the noise power at all the sensors is the same. Fig. 5 shows the 

"subchannel" amplitude spectra. The simulation results are shown in Figs. 6-8 using the same procedure 

and parameters as that for Example 1 except that now we take L = 7. It is seen that the inverse filter 

criteria based approach of Sec. 2 coupled with the MMSE filter performs quite well for signal separation 

at higher SNR's. 

7    Conclusions 
The problem of blind separation of independent linear non-Gaussian signals from their linear convolutive 

mixtures observed in additive Gaussian noise of unknown correlation function was considered. Emphasis 



was on a two-step procedure where first we estimate the system IR. (using one of three approaches) and 

then design an MMSE filter with a controlled delay for signal separation based upon the estimated 

IR. Two simulation examples were presented where it was found that the introduction of the delay 

in MMSE filter design significantly improved the separation performance at the expense of increased 

computational complexity. 
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Table 1: Source-iterative blind signal separation. 

(i) Maximize (2-2) w.r.t.    the equalizer C(z) to obtain (2-3).    Let 74j0     = 

CUM4(e(A0) = CVMA(dwjo(k)). 

(") Cross-correlate {e(k)} (of (2-3)) with the given data (1-1) and define a pos- 

sibly scaled and shifted estimate of /^(T) as 

fijo(r) := E{yi(k)e\k-r)}/E{\e(k)\2}.                                      (T-l) 

Consider now the reconstructed contribution of e(k) to the data yi(k) (i — 

1,2,---,M), denoted by yi,j0(k): 

WJb(*):=£fo>('M*-0.                                                               (T-2) 
l 

(iii) Remove the above contribution from the data to define the outputs of a 

MIMO system with N outputs and M - 1 inputs. These are given by 

iflfc) := yi(k)-yltj0(k).                                                         (T-3) 

(iv) If M > 1, set M <- M- 1, yi(fc) <- y|(fc), and go back to Step (i), else quit. 

FIGURE CAPTIONS 

Fig. 1. Example 1. Amplitude spectra 20log10|i
;iy (eja/)| of various subchannels. [Subchannels F3t and F32 are not 

shown as F31{e'u) = F32{e^) = 0 Vw.] 

Fig. 2. Example 1.   Normalized mean-square error (T-6) in estimating channel matrix impulse response using 

various approaches, averaged over 50 Monte Carlo runs. T = record length. 

Fig. 3. Example 1. Average SINR (signal-to-interference-and-noise ratio) after blind signal separation using various 

approaches, averaged over 50 Monte Carlo runs. Record length T = 1500. 

Fig. 4. Example 1. Average SINR (signal-to-interference-and-noise ratio) after blind signal separation using various 

approaches, averaged over 50 Monte Carlo runs. Record length T — 9000. 

Fig. 5. Example 2. Amplitude spectra 20log10|.Fij(eJ'w)| of various subchannels. 

Fig. 6. Example 2.   Normalized mean-square error (T-9) in estimating channel matrix impulse response using 

various approaches, averaged over 50 Monte Carlo runs. T = record length. 

Fig. 7. Example 2. Average SINR (signal-to-interference-and-noise ratio) after blind signal separation using various 

approaches, averaged over 50 Monte Carlo runs. Record length T = 1500. 

Fig. 8. Example 2. Average SINR (signal-to-interference-and-noise ratio) after blind signal separation using various 

approaches, averaged over 50 Monte Carlo runs. Record length T = 9000. 



Table 2: Performance measures. 

EXAMPLE 1 

Normalization: 

NMSE: 

SINR: 

First remove the ambiguities associated with the estimated channel IR (cf. 

(2-5)). True model (6-1) is such that 

3       2 

E E \uk)\2 = 3 for J =1 and i =2- (T-4) 
i=l fc=0 

Truncate the estimated IR to 4 samples after alignment with the true IR 

and then normalize it to satisfy 

E E lfe(*)l2 = 3   for j = 1  and j = 2. (T-5) 
i=i jb=-i 

The NMSE (normalized mean-square error) is defined as 

M-1 E& ELiE^E^-i^jV)-/;;(-)): 

NMSE =  "  EL^E^O^))2    (T-6) 

where fj^ denote the estimate of the ij-ih subchannel IR for the Z-th Monte 

Carlo run and there are Mc runs. 
For signal separation the performance measure was taken to be the signal- 

to-interference-and-noise ratio (SINR) per source signal, defined as 

£{||y(j)(*)ll2 

SINRj- = 
E{\\yU\k) - af\kW} 

(T-7) 

where a is that value of the scalar a which minimizes E{\\y^\k) - 

ay (A;)||2}; this is needed to remove the scale ambiguity in the design of 

(5-3) - it doesn't affect the SINR.   

EXAMPLE 2 

Normalization: The counterpart to (T-5) is taken as 

E E l&(*OI2 = 3 for J =1 and j = 2> 
t=i *:=-! 

(T-8) 

NMSE: The NMSE is modified as 

M-1 E& 
NMSE 

'E?=iE?=iEUi(/g)(T)-A»-(r)): 

ELi T.U SJ=-i (/«(r)) 
(T-9) 

SINR: As for Example 1. 
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Abstract 

We investigate a suboptimal approach to the fixed-lag smoothing problem for Markovian 

switching systems. A fixed-lag smoothing algorithm is developed by applying the basic In- 

teracting Multiple Model (IMM) approach to a state-augmented system. The computational 

load is roughly d (the fixed lag) times beyond that of filtering for the original system. In 

addition, an algorithm that approximates the "fixed-lag" mode probabilities given measure- 

ments up to current time is proposed. The algorithm is illustrated via a target tracking 

simulation example where a significant improvement over the filtering algorithm is achieved. 

The IMM fixed-lag smoothing performance for the given example is comparable to that of an 

existing IMM fixed-interval smoother. Compared to fixed-interval smoothers, the fixed-lag 

smoothers can be implemented in real-time with a small delay. 

xThis work was supported by the Office of Naval Research under Grant N00014-97-1-0822. 



1     Introduction 

The system with Markovian switching coefficients considered in this paper is represented 

by multiple linear models with a given probability of switching between the models. The 

models are one of the n hypothesized models, M1, • • •, Mn for the system, and the event that 

model j is in effect during the sampling period ending at time tk (i.e., the sampling period 

{tk-i,tk]) will be denoted by M3
k. The state dynamics and measurements, respectively, are 

modeled as 

xk = Fl_xxk_x + G{_A-i w 

and 

zk = Hixk + wl (2) 

where xk is the system state at tk and of dimension mx, zk is the measurement vector at tk and 

of dimension mz, and i^_1; (?k_x, and H{ are the system matrices when model j is in effect 

over the sampling period ending at tk. The process noise vJ
k_r and measurement noise w{ are 

mutually uncorrelated zero-mean white Gaussian processes with covariance matrices Qk_t 

and R{, respectively. At the initial time t0, the initial conditions for the system state under 

each model j are assumed to be Gaussian random variables with mean xJ
0 and covariance 

P$. The prior statistics x{ and Pj are assumed known, as is /4 = P{M£}, the probability 

of model j at the initial time i„. The switching from model Ml
k_t to model M{ is governed 

by a finite-state stationary Markov chain with transition probabilities pij = PiM^M^} 

which are assumed known. 

Motivation for considering system models with switching coefficients (also called stochas- 

tic hybrid systems [11]) stems from applicability of such models to a large class of real-world 

problems such as systems subject to failures/repairs, approximation of nonlinear systems 

with a set of piecewise linearized models, target tracking, etc. [1], [4], [9]-[ll]. 



This paper is concerned with the problem of state estimation for stochastic hybrid system 

(l)-(2). This problem has attracted considerable attention in the literature; see [1], [2], [4]- 

[7], [10], "11] and references therein. Most of the attention has been focused on the filtering 

problem where one is interested in estimating the state xk at time k given the current 

and past measurements Z\ = {zu z2, ■ • •, zk}. The optimal MMSE (minimum mean-square 

error) filter requires nk Kaiman filters in parallel in order to obtain the optimal state filtered- 

estimate at time k. Thus the optimal approach is not practical and suboptimal techniques 

have to be considered. Several suboptimal techniques have been investigated in the literature 

[1], [2], [11]. The interacting multiple model (IMM) algorithm of [2] has been found to offer 

a good compromise between the computational and storage requirements and estimation 

accuracy [10],[11]. 

The state smoothing problem for stochastic hybrid systems has attracted much less at- 

tention.   Here one is interested in estimating the state xk given past and future data Zv 

(N > k). Fixed-interval smoothing problem (where record length N is fixed) has been con- 

sidered in [6] and [7]. Both [6] and [7] have used some versions of the IMM algorithm in order 

to implement fixed-interval smoothing. It is stated in [6, Sec. VIII] that "... we believe that 

the time-reversion and smoothing techniques developed are of interest to other hybrid state 

estimation problems ... This leads immediately to the question if and how IMM-smoothing 

can be extended to fixed-lag smoothing." This paper is concerned with the problem of fixed- 

lag smoothing using an IMM approach.   In fixed-lag smoothing with lag d (d > 0) one is 

interested in estimating the state xk given past and part of future data Z^+d where d is fixed. 

Equivalent^, one looks for estimate of sfc_d given data Z\. For d = 0 we have the filtering 

solution. 

For linear systems with completely known parameters, it is well known that fixed-lag 

smoothing leads to an improvement in the performance (at the cost of increased compu- 

tational complexity) when compared with the zero-lag case (filtering) [8]. Indeed, in most 



cases, a 'small' lag leads to a performance almost as good as that due to fixed-interval 

smoothing [8]. An advantage of fixed-lag smoothing over fixed-interval smoothing is that 

the former can be implemented in real time with a small fixed time-delay whereas the latter 

has to wait for the entire measurement record. 

Fixed-lag smoothing for stochastic hybrid systems has been investigated in [5]. In [5] a 

hypothesis-pruning approach (called detection-estimation [1]) has been considered for state 

estimation. Since the IMM algorithm (which belongs to the class of generalized pseudo-Bayes 

algorithms [2]) has been found to perform better than the hypothesis-pruning approaches 

for the same computational complexity, it is of some interest to investigate IMM algorithm 

based fixed-lag smoothing. 

The paper is organized as follows. The basic IMM filtering algorithm is reviewed in Sec. 2. 

A state-augmentation approach is followed in Sec. 3 to derive an IMM fixed-lag smoothing 

algorithm via the IMM filtering algorithm discussed in Sec. 2. Sec. 3 is focused on state 

estimation. It is of considerable interest to compute the conditional mode probabilities 

P(Ml\Zi+d) (given the data). Certain approximations are suggested in Sec. 4 to compute 

these probabilities. A discussion of the computational requirements of the proposed fixed-lag 

IMM smoother as compared with that of the IMM filter is provided in Sec. 5. In Sec. 6 we 

illustrate the proposed approach via a target tracking simulation example taken from [7]. 

When compared with the results of [7], it shows that a delay of just a few samples leads 

to a performance comparable to that of the fixed-interval smoothing of [7]. Finally, some 

concluding remarks are provided in Sec. 7. 

2    Basic IMM Algorithm 

The IMM algorithm [2] for state filtering is based on running n "mode-matched" state estima- 

tion filters which exchange information (interact) at each sampling instant. It assumes that 



the conditional probability density f{xk\M3
k,Z$) is Gaussian with mean xJ^k = E{xk\M3

k, Z\} 

and covariance PJfc = E{[xk-xj
klk][xk-xJ

klk]'\M3
k, Z

k} where the symbol' denotes the trans- 

pose operation. In reality, however, the density f(xk\Mk,Z£) is a Gaussian sum (containing 

nk terms). 

As the algorithm is well-explained in [1] (see also [10] and [11]), we will only briefly 

outline below the basic steps in "one cycle" (i.e. processing needed to update for a new 

measurement) of the IMM filtering algorithm. We follow Table I of [10] for most part. 

Initialization: Given x3
k_^k_x, the associated covariance matrix P^^ and the condi- 

tional mode probability y?k_x := ^(M^xl^i"1) for each j G Mn := {1,2, • • • ,n}. For k = 1, 

we take £J
0|0 = x3

0, P3
]0 = P% and /4 = P{M3

0). 

Interaction (Vj G Mn): 

predicted mode probability: 

ij- := P{M{\Z\-^ = J2PUÄ-1 W 

mixing probability: 

^ := P{Mi
k_l\Mi,Zk

1-
x}=VlA-J^~ (4) 

mixed estimate: 

xt^ := E[xk_x\Ml Zt1} = ECufc-i^' (5) 

covariance of the mixed estimate: 

= £ {^-i|fc-i + &-i|*-i - ^ili-iM-iifc-i - ^iufc-i]'} M* (6) 
t=l 

Prediction and filtering (Vj G .Mn): 

£i|fc_x = E{xk\Ml, Z*-1} = i^-iSjiii*-! (?) 

5 



DJ 
rk\k-l 

-FUPt^FU + GUQUGU 

measurement residual: 

v{ := zk - Hix^ 

residual covariance: 

Si:=E{vi4'} = HlPilk_1Hl' + Bi 

filter gain: 

wi = Hik-iW'si-1 

filtered state estimate: 

x£|fc = E{xk\Ml Z*} = 2i|fc_x + WjW 

covariance of the filtered state estimate: 

Pllk = £{[xfc - xl]k][xk - £i,fc]W*'. ^i > 

= rt\k-i - wisiwi' 

likelihood function: 

Ai=-AA(^;0,5^):=|27r^|-1/2exp 

mode probability: 

li = P{Ml\Zt) 

-\jk{si)M 

MJ'-AJ
fc 

Combination: 

xk\k = E[xk\z!f] = Y2si\ktj'1k 

Pfc|fc = E{[a;fc - £fc|fc][zfc - £fc|fc]'|^i} 

(8) 

(9) 

(10) 

(11) 

(12) 

(13) 

(14) 

(15) 

(16) 

(17) 

i=l 



3     IMM Fixed-Lag Smoothing Algorithm 

For some fixed-lag d and all k > d , our objective is to find the fixed-lag smoothing state 

estimate 

£k-a\k = E[xk-d\Z}] (18) 

and the associated error covariance matrix 

Pk-d\k = E{ [xk-d - xk-d\k][xk-d ~ £fc-d|fc]'|^i }• (19) 

When d = 0, we have the filtered state estimate as discussed in Sec. 2. We will follow a 

state-augmentation approach to define a larger dynamical stochastic hybrid system and then 

apply the results of Sec. 2 to this augmented system. State augmentation for derivation of 

fixed-lag smoothing estimators has been used before for "non-switching" linear systems [8, 

Sec. 7.3] but not for stochastic hybrid systems. 

Augment the state variable xk to Xk as 

il = Pi0'', 4"',-,4d)'] <2°) 

where 

ä&0) = *fc,   ä£} = **-i.   •■•>   si? = **--• W 

Suppose that for the augmented system, we obtain the filtered state estimate 

£fc|fc := E{xk\Z*} C22) 

and the associated covariance matrix 

Pk{k := E{[xk - xk[k][xk - Xk\k]'\Z*}. (23) 

It therefore follows that 

$&:=E[<$>\Z»]=2>~V (24) 



and 

P<*> := E{[x^ - §«pW - %jk]'\Z*} = Pk-Ak 

for i = 0, • • •, d, where 

(25) 

5(o.o) 
-Nfclfc 

5(0,1) 5(°.«0 " 
'     rk\k 

5(i.o) 
rk\k 

5(i.i) 

5W 
-ffclfc 

p(W,i) 
■Nblfc 

5(<*.«Q 

fclfc 

Note that Pk\k is symmetric, i.e., Pj$' = P^1 . 

Using (1), (2), (20) and (21), the augmented system can be written as follows: 

™(o) x 

x{1) x
k 

^(2) 

Xk 

i    o 

0      / 

0      0 

0   0 " ?(0) xk-l " GU ' 
0   0 Xk-1 0 

0   0 xk-\ + 0 

I   0 x{d) 

.    fc-i 
0 

Jk-1 
(26) 

and 

zk = [H{ 0   •••   0 0] 

x (o) 

~(i) 

(2) x 

=(«9 

+ ™l (27) 

The above augmented state and measurement equations may be written more compactly as 

xk = $>_&-! + GUvi-r (28) 

anc 

zk = H'kxk + w{ (29) 



where the system matrices Fj._l7 G3
k_r, and H3

k are defined in an obvious manner. 

We now apply the basic IMM algorithm to the augmented system. Unlike Sec. 2 where 

f(xk\M3
k, Z\) is approximated by a Gaussian random vector, now we approximate f(xk\M3

k,Zx) 

= f(xk, xk-i, ■■■, xk_d\Ml, Z\) by a Gaussian random vector. Clearly the latter approxima- 

tion implies the former whereas the converse is not true in general. The resulting algorithm 

is as follows: 

Interaction (Vj G Mn): 

predicted mode probability: 

/*''" := P{Mi\Z^} = X>;/4-i (3°) 
i=l 

mixing probability: 

^i := P{Mi_x\Mi Z^1} = vaA-JlJ- (31) 

mixed estimate: 

^Vx = E[xk^\Ml zn = t Ci,* V"' w 

covariance of the mixed estimate: 

= £ {3U-X + S-xl*-i - Cx^lS-H*-! - *Uk-.)'} ^ (33) 

We will only be interested in P^IU» the diagonal sub-matrices of P%Li\k-i> and in 

pOj{o,i)     r     • _ Q i ...   d - 1, in order to complete the filtering process in the sequel [8, 
fc—i|fc—i' '   '      ' 

Sec. 7.3]; see also (37) later in this paper.  Thus in (33) we only need to compute Pk
3_^ 

andPJfc
0i(

1
0

|i2.1fart = 0,-.->d-l. 

Prediction and filtering (Vj € Mn): 



Using (7), (8) and (26), it follows that 

SJ5?_X = E{^\MI zry = $_$*%_, (34) 

^ = E{^\Ml,Zr} = ^Ii iori = l,-,d (35) 

= FUP^FU + GUQUGU (36) 

^^^^far^l,..-^ (37) 

and 

5J(°.0 _ pi    5°J'(°.0     for i = 1 ■ • •   d (38) rfc|fe-l ~ rk-irk-i\k-i   ion —i,       ,u. v     / 

Using (9), (10) and (27), it follows that 

measurement residual: 

J — zu- HjZJ{?] (39) Vk •— Zk        nkXk\k-\ V      ' 

residual covariance: 

Si^Eiv^^HlP^Ht + Ri. (40) 

filter gain: Using (11) it follows that 

W>® = I*$Hi'ST1 for i = 0,---,d. (41) 

Using (12) and (13) we have 

pfeife = xk\k-t + wk"k ^    } 

p^ = pXW - Wl^Siwi^' for i = 0,1, • • •, d (43) 

P^ = P$$. - W?0)Siwi®' for » = 1, • • • ,d. (44) 

10 



likelihood function: 

Ki = Af(4;0,si) = \2-KSi\-^2 exp ■UxsirÄ 

mode probability: 

Hl = P{M'k\Z*) 
/^ 

ELiMl-Al
fc 

(45) 

(46) 

Combination: 

n 

xk{k — E[xk\Z^ = Ytxklkfj,1 

Pk\k = E{[xk - xk\k][xk - £fc|fc]'|^i} 

= £ \H\k + fil\k - Xk\k)[xk\k - Xk\k}'] (A 

(47) 

(48) 
i=i 

In (48), as before, we need not compute all the elements as we are only interested in Pk\£ 

and Pffi for i = 0, • • • , d. 

Finally we obtain the smoothed state estimates (in addition to the current state estimate): 

(49) 
Xk-i\k = Zfc|fc 

and the associated error covariance matrix 

p        _ p(*>0 
r"k-i\k - rk\k 

(50) 

for i — 0, • • •, d. 

Initialization for the Augmented System: In order to let the augmented system have 

the same dynamics as the original system, we set 

50 = Wo  0  ... 0]' (51) 

which implies that 

xo|o cjj    and    x0|0 =0 for i ^ 0 (52) 
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and 

P$'°> = Pi   and   P*M = 0 for (k, I) + (0,0). (53) 

Recall that for the original system we have 

x0|o=^o    and    P0
J
|0 = P£. (54) 

4    Approximation of Mode Probabilities 

In Sec. 3, we obtained only the mode probability at tk in (46). In keeping with fixed-lag 

smoothing, we would also like to obtain the mode probabilities P{Ml_i\Z
1[) for i = 1, • • •, d. 

Following some of the approximations made in [7], we make an approximation by replacing 

Z\ with {£fc_i|fc, Zi-i}, i.e., 

P{Mi_i\Z\)   «   PiMUx^Z*-') 

= hmk-i\k\ML,zkr)p(Muzkr)} (55) 
c 

where c in (55) is a normalization constant given by 

c = £ f(xk-ilk\MU zkr)p(ML\zt% (56) 

In a manner similar to that in Eqns. (75) and (84) of [7], we have replaced the measurements 

Zk-i+i in (55) with the smoothed state estimate xk-i\k. We also make the approximations 

f{Zk-i\k\MU,Zkr)   «   fMMUtZ*-1) 

~   AT(sfc_i; £}U|fc_i, Pl-i\k-i) 

«   tf{xk_i]k;&k_i\k_i,Pl_i\k_i). (57) 

where 

Af(x; y, P) := |27rP|-1/2exp [-^(x - y)'P-\x - y)] . (58) 
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Therefore, (55) can be rewritten as 

P(MiJZi) « ^{Sk^k^^iiH^\^)P(MUZi-i) (59) 

where normalization constant c' is given by 

We note that in (59), P{M3
k_i\Z^i) is the "old" mode probability based on filtered state 

estimates when measurements only up to tk-i are available. It is the likelihood function that 

Kffri. -M.-X
J
 •„ • P? •„ ■) utilizes the new information contained in measurements after 

time tk-i- 

It should be noted that (58) can not be applied if \P\ = 0. As will be seen in Sec. 6 in 

a target tracking context, for constant velocity models with accleration as a system state, 

such a situation can arise. Our solution (discussed in more detail in Sec. 6) is to use a state 

of reduced order such that the corresponding covariance matrix is of full rank. 

5     Analysis of Computational Load 

Here we carry out a "crude" comparison of the IMM smoothing algorithm of Sees. 3 and 4 

with the original non-augmented system IMM filtering algorithm (see Sec. 2) regarding their 

relative computational requirements 

During interaction, comparing (3) and (4) with (30) and (31), respectively, it is seen 

that the computational loads are identical. Comparing (5) and (6) with (32) and (33), 

respectively, it is seen that the latter needs more multiplications: the computational load 

of (32) is d times that of (5) and the computational load of (33) is originally d2 times that 

of (6), but since we only need the diagonal sub-matrices and the sub-matrices in the first 

column of P^L^^, it turns out that the computational load of (33) is reduced to about 2d 

times that of (6). 
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During prediction and filtering, comparing (7) and (8) with (34)-(38), we first note that 

(35) and (37) do not need any additional computations at all. Furthermore, (34) and (36) 

have the same computational load as that for (7) and (8). The only computational increase 

here for the smoothing algorithm is in (38). There is no relative computational load increase 

in computing measurement residual (see (9) and (39)), residual covariance (see (10) and 

(40)), likelihood function (see (14) and (45)) and mode probability (see (15) and (46)). 

There is indeed some computational load increase when computing the filter gain (see (11) 

and (41)), but this only involves matrix multiplication (and not other complex operations 

such as computing inverse of a matrix). The same is true for state estimate and its error 

covariance matrix for each mode (see (12)-(13) and (42)-(44)). 

During combination, the relative computational load increases are similar to that for (32) 

and (33), i.e., of the order of d times that of (17). 

The mode probability P(Ml_N\Z$) calculations in (59) are of the same order as that for 

(46) and (15). 

Overall we run n filters/smoothers in parallel whereas [7] runs n2 smoothers in parallel 

and [6] runs n smoothers in parallel. Unlike [6] and [7], we do not need a backward-time 

model (and its "initial" conditions at final time). More significantly, we run the smoother 

(beyond the filtering part) only for d samples whereas [6] and [7] run it over the entire 

measurement record. 
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6     Simulation Example 

A target tracking example is provided to compare the performance of the IMM fixed-lag 

smoothing algorithm and the (forward-time) IMM filtering algorithm. This example has 

been taken from [7]. The following scenario is considered. A target is moving in a two- 

dimensional plane with a constant speed and performing two constant-speed 3g maneuvers. 

The first maneuver occurs from 10 to 22 s, and the second one from 26 to 38 s. The true 

position, velocity and acceleration of the target are shown in Fig. 1. Position measurements 

(range and bearing) of the target are sampled with period T = 1 s. The measurements 

contain zero-mean Gaussian errors with standard deviations of 15 m in range and 0.002 rad 

in bearing. 

The state of the target is defined as 

x = [titniv] (60) 

with £ and r\ denoting the orthogonal (Cartesian) coordinates of the horizontal plane and 

l := ^. The discrete-time multiple model set consists of two models (n = 2 in (l)-(2)) as: 
^ dt 

1) The Constant Velocity (CV) model (j = 1 in (l)-(2)) with a piecewise-constant accel- 

eration process noise and the noise covariance Qcv = 0.25J2 m
2/s4 where J2 is the 2 x 2 

identity matrix. The corresponding system matrices are [3]: 

1 T   0 0 0    0 

0 10 0 0    0 

0 0    0 0 0    0 

0 0    0 1 T   0 

0 0   0 0 10 

0 0   0 0 0   0 

Fl — F   = 

lrp2 
2 

0 

T 0 

i     @k — G<™ — 

0 

0 

0 

lrp2 
2 

0 T 

0 0 

(61) 
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2) The Constant Acceleration (CA) model with a piecewise-constant jerk process noise 

and the noise covariance Qca = 9J2 m
2/s6. The corresponding system matrices are: 

1 T \rp2 
2 0 0 0 lrp3 

6 0 

0 1 T 0 0 0 \rp2 
21 0 

Fl- - F   = ■>■ ca 

0 

0 

0 

0 

1 

0 

0 

1 

0 

T 

0 

ln-i2 
21 

)      &k — Gca  — 
T 

0 

0 

6X 

0 0 0 0 1 T 0 \rp2 
21 

0 0 0 0 0 1 0 T 

(62) 

The initial model probabilities are p\ = 0.9 and fi\ = 0.1 (as in [7]). The model-switching 

probability matrix is given by 

Pn    Pl2 

P21   P22 

0.95   0.05 

0.10   0.90 

(63) 

The initial estimates of the velocity and acceleration are arbitrarily set to zero, with variances 

of 106m2/s2 and 106m2/s4, respectively, as in [7]. 

Let X(t)fc denote the i-th element of vector xk which is a 6-vector (cf. (60)).  The mea- 

surements are given by 

Zk +  Wk (64) \/X(l)fc   +   ^(4)*: 

arctan (s(4)fc/a5(i)Jt) 

where the measurement equation is the same for the two models in the model set.   The 

covariance matrix of the 2-vector wk is given by (as in [7]) 

(15 m)2 0 

0 (0.002 rad)2 

A first-order Taylor series expansion around x^k_x was used to linearize (64), i.e. a first-order 

extended Kaiman filter (EKF) was used to apply the various estimation algorithms. 

The fixed-lag IMM smoothing algorithm was implemented using a first-order EKF over 

100 Monte Carlo runs.  Note that due to the fact that all the elements in the 3rd and 6th 

Rk — &k — 
(65) 
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rows of Gcv are zero, the determinant of Pl_i\k_i is zero where model j = 1 is the CV model. 

Therefore in this example we can not apply (57) directly. Instead we use a state of reduced 

order with xT := [£ £ T] TJ] so that we can evaluate (57). The order of the corresponding 

covariance matrix Pfc_;|fc_; in (57) is reduced to match the state xr accordingly. Note we 

need to use xr for both the CV model and the CA model, in order to calculate the likelihood 

function defined in (57). This 'adaptation' is reasonable because we should weight the 

probabilities of all models based on the same set of states. 

Fig. 2 displays the average root-mean-square errors (RMSE) in position, velocity and 

acceleration, and the average CV model probabilities. The legend used in Fig. 2 is self- 

explanatory: 0 stands for the case of (forward-time) IMM filtering (no smoothing, or fixed- 

lag d = 0) and 1, 2 and 3 stand for the case of the proposed fixed-lag IMM smoothing 

algorithm with fixed-lags d =1, 2 and 3, respectively. The thick solid line in Fig. 2(d) stands 

for the normalized magnitude of the acceleration. It can be seen from Fig. 2(a)-(c) that 

the various RMSE's using the proposed smoothing algorithm decrease with increasing lag 

d. Comparing Fig. 2 with Fig. 4 in [7], it is seen that the performance of our algorithm for 

d = 3 almost approaches that of fixed-interval smoothing algorithm presented in [7]. When 

d = 1, the most significant reduction in RMSE occurs where the peak RMSE in position is 

reduced from 145 m (no smoothing) to 65 m while the peak RMSE in velocity is reduced 

from 102 m/s (no smoothing) to 78 m/s. Besides, significant reductions in RMSE are also 

achieved over the entire tracking interval. 

Fig. 2(d) displays the average CV model probability for d = 0, • • • ,3, as well as the nor- 

malized magnitude of the true acceleration. Clearly maneuvers are detected by the proposed 

smoothing algorithm (d > 1) more quickly compared to the forward-time IMM filtering al- 

gorithm. Except for a short period following model switching, the probability of one of the 

models in the model set is always quite close to one and it reflects the true motion status 

of the target, whereas the mode probability obtained via the forward-time IMM filtering 
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algorithm is sometimes somewhat uncertain even after the transient stage. 

Overall it is seen that even a small lag can lead to a much better state estimation 

performance. 

7    Conclusions 

We investigated a suboptimal approach to the fixed-lag smoothing problem for Markovian 

switching systems. A fixed-lag smoothing algorithm was developed based on the concept of 

interacting multiple models [2]. The filtering and smoothing for the original system were 

integrated by introducing a state-augmented system whose current state vector consists of 

the current and delayed states (down to a fixed-lag d) of the original system. The fixed-lag 

mode probabilities given measurements up to the current time were approximated using a 

simple but effective method. 

Simulation results for estimating the trajectory of a maneuvering target were presented 

to compare the performances of the proposed smoothing algorithm and the forward-time 

IMM filtering algorithm using an example from [7]. The performance of the fixed-lag IMM 

smoother was significantly better than that of the IMM filter. The performance of the 

proposed fixed-lag IMM smoothing algorithm quickly approaches that achieved by the fixed- 

interval smoothing algorithm of [7] with increasing lag; recall that we have used the example 

of [7] in Sec. 6. Compared to fixed-interval smoothers, the fixed-lag smoothers can be 

implemented in real-time with a small delay. 

Overall we run n filters/smoothers in parallel where n is the number of models in the 

model set. The total computational load is roughly (d + 1) times that required by the 

forward-time IMM filtering for the original system. Given measurements up to time tk, in 

addition to the smoothed state estimate at time tk-d we also obtain the smoothed state 

estimates from ifc-d+i through ifc_i and the current state estimate at tk without any extra 

18 



effort. 
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Abstract 

The problem of blind equalization of SIMO (single-input multiple-output) communications chan- 

nels is considered using only the second-order statistics of the data. Such models arise when a single 

receiver data is fractionally sampled (assuming that there is excess bandwidth), or when an antenna 

array is used with or without fractional sampling. We focus on direct design of finite-length MMSE 

(minimum mean-square error) blind equalizers. Unlike the past work on this problem, we allow 

infinite impulse response (IIR) channels. Our approaches also work when the "subchannel" transfer 

functions have common zeros so long as the common zeros are minimum-phase zeros. Illustrative 

simulation examples are provided. 
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1    Introduction 

Consider a discrete-time SIMO (single-input multiple-output) system with N outputs and one input. 

The i-th component of the output at time k is given by 

yi(k)  = Fi(z)v){k) + ni{k),   i = 1,2,---,N, (1-1) 

=>     y(jfe)  =  F(z)w{k) + n(ft)  =  s(fc) + n(A:), (1-2) 

where y(Jfe) = [yi(lfe) :.y2(k) :■ • -:y^(fc)]T, similarly for s(fc) and n(Ä), and z is the ^-transform 

variable as well as the backward-shift operator (i.e., z~lw{k) = w(k-l), etc.). The sequence w(k) 

is the (single) input at sampling time k, yi(k) is the t-th noisy output, s;(fc) is the t-th noise-free 

output, rii(k) is the additive measurement noise, and 

oo 

Fi(z)  := £/i(*K' (1"3) 

1=0 

is the scalar transfer function with w(k) as the input and y^k) as the output; it represents the 

t-th subchannel. We allow all of the above variables to be complex-valued. The overall transfer 

function is denoted by the N x 1 T{z) with its t-th element as Ti{z). We have 

oo 

*■(*) = EF^"1'- (1"4) 

t=0 

Such models arise in several useful baseband-equivalent digital communications and other appli- 

cations. A case of some interest is that of fractionally-spaced samples of a single baseband received 

signal leading to a SIMO model [1],[4],[8]. Alternatively, a similar model can be derived when we 

have a single signal impinging upon an antenna array with N elements [5]. A similar model arises 

if we have an antenna array coupled with fractional sampling at each array-element [5]. 

In these applications one of the objectives is to recover the inputs w(k) given the noisy mea- 

surements but not given the knowledge of the system transfer function. Recently there has been 

much interest in solving this problem using only (or at least, to the maximum extent possible) 

the second-order statistics (SOS) of the data (see [1], [3]-[5], [8]-[14] and references therein). The 

solution is closely tied to existence of an FIR (finite impulse response) inverse to the system transfer 

function [1], [3]-[5], [8]-[14]. An overwhelming number of papers (see [4],[5],[9]-[12] and references 



therein) have concentrated on a two-step procedure: first estimate the channel impulse response 

(IR) and then design an equalizer using the estimated channel. A fundamental restriction in these 

works is that the channel is FIR with no common zeros among the various subchannels. A few (see 

[ljand [13], e.g.) have proposed direct design of the equalizer bypassing channel estimation. Still 

they assume FIR channels with no common zeros. 

In this paper we allow IIR (infinite impulse response) channels (which are finitely parametrized). 

We will also allow common zeros so long as they are minimum-phase (i.e., they he inside the unit 

circle). Finally, in the presence of nonminimum-phase common zeros, our proposed approach 

equalizes the spectrally-equivalent minimum-phase counterpart of T{z)\ it does not "fall apart" 

unlike quite a few existing approaches. We should note that our proposed approach is inspired by 

[1]. Unlike [1] our approach applies to antenna arrays since we do not require that /x(0) ^ 0 but 

/,(0) = 0 for i = 2,3, ••-,#, as is required by [1]. This requirement of [1] is not restrictive for 

single-receiver causal systems with fractional sampling as one can always achieve this by "shifting," 

i.e. "re-grouping" of fractional samples per symbol. It does demand symbol synchronization so 

that fractional samples belonging to a given symbol are known thereby allowing for shifting or 

re-grouping to achieve the aforementioned requirement. In this paper we don't require such a 

synchronization; only the baud rate ought to be known. 

Note that the prediction error methods of [8], [9] and [14] apply to the problem under considera- 

tion with some straightforward extensions/modifications (as we discuss in Sec. 3.3.3). Interestingly, 

[8], [9] and [14] derive their results under the assumption of FIR channels with no common zeros. 

Three approaches are proposed in this paper for designing a blind MMSE (minimum mean- 

square error) linear equalizer of a specified length and delay. The approaches do not require the 

knowledge of the underlying system model orders or IR length. Algorithms I and II are inspired by 

[1] whereas Algorithm III is a straightforward extension of [9] and [14]. Algorithm II also exploits 

some results from [9] and [14] (see Remark 4 in Sec. 3.1). 

The paper is organized as follows. Precise model assumptions and some background results used 

later in the paper are stated and developed in Sec. 2. IIR channels with no common subchannel 

zeros are considered in Sec. 3 where the three proposed algorithms of this paper are developed. 



Under the assumptions of Sec. 3, finite length inverses and zero-forcing equalizers exist. In Sec. 4 

we allow common subchannel zeros. Here ideally we need infinite length inverses and zero-forcing 

equalizers. Two computer simulation examples involving a 4-QAM signal are presented in Sec. 5 

to illustrate and compare the performances of the proposed approaches. 

2     Model Assumptions and Preliminaries 

In this section we consider precise model assumptions and some background results used later in 

the paper. The material in Sec. 2.1 is useful in developing Algorithm I (see Sec. 3) whereas the 

material in Sec. 2.2 is useful in developing Algorithm III. Algorithm II exploits both Sees. 2.1 and 

2.2. Lemma 2 is needed to estimate the noise variance. Lemma 1 is a straightforward extension of 

the results of [9] and [14]. 

2.1    FIR Inverses 

Let T(z) = A-1{z)B(z) where A{z) = 1 + £?=i a^ is 1 x 1 and B(z) = E?=oB^_i is N x L 

Assume the following: 

(HI) N> 1. 

(H2) Rank{£(z)} = 1 Vz including z = oo but excluding z = 0, i.e., B(z) is irreducible [7, 

Sec. 6.3]. 

(H3) A(z) ? 0 for \z\ > 1. 

Assumption (H2) is equivalent to stating that the various subchannels Fi(z) have no common zeros. 

It has been shown in [6] (using some results from [2]) that under (H1)-(H3) there exists a finite 

degree left-inverse (not necessarily unique) of T(z): 

G(z)F(z) = 1 (2_1) 

where Q(z) is 1 x N given by 

Q{z) = YJGIZ'1    for any     Le > na + nb - 1. (2"2) 



Remark 1: The left-inverse Q(z) of T{z) consists of two parts: Q{z) = GB(z)A(z) where 

GB{Z)B{Z) = 1 so that G{z)T{z) = GB(Z)A(Z)A-
1
(Z)B(Z) = GB(Z)B(Z) =1. Finite length left- 

inverses of FIR SIMO channels have been subject of intense research activities [4]-[6],[8]-[13]. Left- 

inverses to MIMO IIR/FIR channels have been considered in [6]. It appears that the results of [6] 

pertaining to MIMO models are the sharpest to date. Finally, it is important to stress that [4], 

[5] and [8]-[13] do not allow IIR channels, or subchannels having common zeros, in their problem 

formulation unlike this contribution. 

2.2    Linear Innovations Representations 

Assume further the following: 

(H4) {w(k)} is zero-mean, white. Take E{\w(k)\2} = 1 by absorbing any non-identity corre- 

lation of w(k) into F(z). 

Lemma 1. Under (H1)-(H4), {s(k)} may be represented as 

M 

s(jfe) =  -2Dis(fc-i) + /,(fe) (2"3) 

where M = na + nb - 1, Di's are some N X N matrices such that det(X>(z)) ^ 0 for \z\ > 1, 

V(z) - I+T,iii Di2_i and {Ia(k)} is a zero-mean white Nxl random sequence (linear innovations 

for {s(fc)}) with 

EiUk^ik)} = F0F«  and  ||F0||-2F?7s(fc) = w(k).    • (2-4) 

Proof:   Consider the process 

s'(fc)  := A(z)s(k) = B{z)w{k). (2-5) 

By [9] and [14], under (HI), (H2) and (H4), we have 

s'(fc) = - E D<s'(* - *) + r^ (2"6) 

t=i 

where D<s are some N x N matrices such that det(V'(z)) ^ 0 for \z\ > 1, V\z) = 1 + Y$Li Diz~l 

and {I's(k)} is a zero-mean white Nxl random sequence (linear innovations for {s'(fc)}) with 

25tf(*)£W(*)} = BoB?  = FoF?  and  ||F0||-
2F?j;(fc) = w(k). (2-7) 



Since s(fc) = A^^s'ik), it follows from (2-6) that (2-3) holds true with Is(k) = I'JJs) such that 

V{z) = A(z)V'(z). This completes the proof.     □ 

Lemma 2. Let TlssLe denote a [N(Le + 1)] x [N(Le + 1)] matrix with its tj-th block element as 

R„(j'-i) = E{s(k+j-i)sn(k)}. Then under (H1)-(H4),/J(71ML.) < #£e + l for Le > na + nb-\ 

where /»(A) denotes the rank of A.     • 

Proof:   It follows from Lemma 1 and (2-3) that 

I   Dx D Tla+Tlb-l -i    0 0 fcssL.   = F0F?   0   ■••   0 

Clearly 

and 

I   Dx 

F0F?   0 

D na+nt-l 
JV 

Using (2-8)-(2-10) and Sylvester's inequality [7, p. 655], it follows that 

p{n..L.) +N-N(Le+ 1)<1 

which yields the desired result.    D 

(2-8) 

(2-9) 

(2-10) 

(2-11) 

3    Blind Equalization: No Common Zeros 

In this section IIR channels with no common subchannel zeros are considered. For these channels 

finite length inverses and zero-forcing equalizers exist. The main objective of this paper is to design 

a blind MMSE linear equalizer of a specified length and delay. To this end, as will become clear in 

Sec. 3.2, we need to consider the design of a zero-forcing zero-delay linear equalizer of a specified 

length which is discussed in Sec. 3.1. 

Assume that assumptions (H1)-(H4) hold true. In addition assume the following regarding the 

measurement noise: 

(H5) (n(fc)} is zero-mean with E{n(k + r)nw(fc)} = CT£INXN where INxN is the N X N 

identity matrix. 



3.1     Zero-Delay Zero-Forcing Equalizer 

Using (2-1) and (2-2) and setting T[z) = E~oF^"% we have 

~ j     1,     771 = 0 

1=0 0,   m = 1,2, - ■ •, 
(3-1) 

leading to 

Go    Gi GLc 
5 = 1   0 (3-2) 

where 5 is the (N(Le + 1)) x oo matrix given by 

Fo   Fi    F2   F3     ■ 

0     F0   Fi    F2      (3-3) 

0      0     •••     0     F0   Fx    •• 

Let S* denote the pseudoinverse of 5. By [15, Prop. 1], 5# = Sn(SSn)*. Then the minimum 

norm solution to the FIR equalizer is given by [15, Sec. 6.11] 

Go    Gi GLe 1   0 s* 

F?   0 (SS'L) ■-H\# (3-4) 

In a fashion similar to nssLt in Lemma 2, let nyyLe denote a [N(Le + 1)] X [N(Le + 1)] 

matrix with its ij-th block element as Ryy(j - i) = E{y(k + j- i)yn(k)}; define similarly Tlnnu 

pertaining to the additive noise. Carry out an eigendecomposition of UyyLc ■ Then the smallest 

N - 1 eigenvalues of ftwL« equal a2
n because under (H1)-(H4), p(KssLe) < NLe + l whereas 

p{KnnLc) = NLe + N = piKyyL,)- Thus a consistent estimate o£ of cr£ is obtained by taking it 

as the average of the smallest N - 1 eigenvalues of ÜyyL,, the data-based consistent estimate of 

Under (H4) and (H5), 

(55    )   =   TlssL,    =   nyyLe - KnnLe    =   TlyyL,   ~  aJ- (3-5) 



Thus, (SSn) can be estimated from noisy data. However, we don't know F0. To this end, we seek 

an N x N FIR filter Qa(z) := EfeoGa^_t' satisfying 

'# (3-6) 
*a0 Gal GaLe INXN   0 ni 'L^ 

Comparing (3-4) and (3-6) it follows that 

Go    Gi GL, F? Gao   Gai    • • •   GaLc 

leading to 

Y^GiZ-' =: Q(z) = F*ga(z). 
i-o 

In practice, therefore, we apply Ga(z) to the data leading to 

v(ife) := Ga(z)y(k) = v.(fc) + Qa(z)n(k) 

such that 

F?v,(fc)  =  to(fc) 

where 

v,(&) := Sa(z) [y(Ä) - n(Ä)] = &(*>(*)■ 

(3-7) 

(3-8) 

(3-9) 

(3-10) 

(3-11) 

In (3-10) {w(k)} is a white scalar sequence (by assumption (H4)), however, {v,(A:)} is not 

necessarily a white vector sequence. Given the second-order statistics of {v,(A:)}, how does one 

estimate F0 so that {w(k)} satisfying (H4) is recovered? We need to have RWW(T) := E{w(k + 

r)w*(k)} = 0 for \r\ ? 0. By (3-9), Rww(r) = F?ä„,1,.(T)FO. Define (L > 0 is some large integer) 

R»,,   ■=   [<„.(-!) <..(-2)   •••   RL.(-L)]T (3-12) 

where E„a„a(r) := E{v3(k + r)v*(k)}. 

Lemma 3.    Ä„3„3 is rank deficient for any L > 1 such that RV,V,F0 = 0.    • 

Proof:   We have 

ä«V.(T) = E{w(k + r)v?(k)} = 0   Vr > 1 (3-13) 



because va(k) is obtained by causal filtering of y(A), hence of w(k). Using (3-10) in (3-13) it then 

follows that there exists a N X 1 F0 ^ 0 such that 

F?ä„,V3(T) = 0   Vr>l. (3-14) 

Equivalently, we have from (3-14) 

RVaV,(-r)Fo = 0   Vr>l. (3"15) 

The desired result is then immediate.    □ 

Pick aJVxl column-vector H0 to equal the rightmost right singular vector in a singular-value 

decomposition (SVD) RVaV, = USVn, i.e. the right singular vector corresponding to the smallest 

singular value. In other words, pick H0 to equal the last column of V. Then since ideally the 

smallest singular value of Rv,v, is zero, we have H^Ä„3„3(-r)H0 = 0 for r = 1,2, • • •, L. This, in 

turn, implies that 

(H?ÄV3„3(-r)Ho)7i = H«E„^(r)Ho = 0 for   T=1,2,-,L. (3-16) 

Since the overall system with to(fe) as input and H?vs(fc) as output is ARMA(ra0,n6 + Le), it 

follows that H#vs(A:) is zero-mean white if L > nb + Le, hence, a scaled version of w(k). Therefore, 

we have (a ^ 0) 

H?vs(fc)  =: to'(fc) = aw(k) (3'17) 

(because S„3„3H0 = 0). Thus, once H0 is found, one has the complete inverse filter to recover a 

scaled version of w(k) via a zero-forcing filter. 

Remark 2: In [1] F^ in (3-4) has been replaced with an JV-row vector [1 0 • • • 0]. This 

requirement of [1] is not restrictive for single-receiver causal systems with fractional sampling as 

one can always achieve this by "shifting," i.e. "re-grouping" of fractional samples per symbol: 

set /i(0) ^ 0 but /i(0) = 0 for t = 2,3, ••-,#. It does demand symbol synchronization so 

that fractional samples belonging to a given symbol are known thereby allowing for shifting or 

re-grouping to achieve the aforementioned requirement.   In this paper we don't require such a 



synchronization; only the baud rate ought to be known.   The approach of [1] does not apply to 

antenna arrays whereas our approach does.    □ 

Remark 3:    If the noise is colored with known color except for a scalar scale factor, then we 

can follow prewhitening (as in [5]) and convert the problem to one that obeys (H5).    □ 

Remark 4: F0 can also be estimated (up to a scale factor as unit norm H0) using the 

prediction error method of [9],[14] (even though [9] and [14] restrict their discussion to FIR models 

and real-valued data). Using (2-3) we obtain (Le >na + nb-l) 

Di    D2    •••   BLe    Ks,{Lc-i) 

leading to the minimum norm solution 

Di   D2   ••■   DLe 

R„(l)   R„(2)   •••   R,.(Ie) 

n 3s{Lc-iy 

(3-18) 

(3-19) R„(l)   Rss(2)   •••   RS5(ie) 

Note that if Le > na + nb - 1, then Di = 0 for all * > na + nb - 1 by virtue of Lemma 2. By (2-3) 

and (2-4) we also have 

RJI(O) := E{I,(k)I?{k)} = FoF? = R„(0) + X)D<R"(-0- (3-20) 
t=i 

Clearly />(RM(0)) = 1. Carry out an eigendecomposition of R/j(0). Pick H0 as the unit norm 

eigenvector corresponding to the largest eigenvalue (ideally the only nonzero eigenvalue) of Rjj(0). 

D 

Remark 5:   It is worth noting that although F«v5(A;) = w(k) (see (3-10)) and ||F0|r
2F«J,(A;) = 

w(k) (see (2-4)), {!,(*:)} is zero-mean white (Unear innovations) whereas {vs(fc)} is in general col- 

ored.    □ 

3.2    MMSE Equalizer with Delay d 

We wish to design an MMSE (minimum mean-square error) Unear equalizer of a specified length. 

It is not too hard to establish (using the orthogonality principle [16], for example) that the MMSE 

equalizer of length Le + 1 to estimate w(k -d)(d> 0) based upon y(n),   n = k, k - 1, • • •, k - Le, 

satisfies 

Gd,o    Gd,i Gd,Lc F?    FJU F?   0   • KyyLc 
(3-21) 
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where TZyyLe has its tj-th block-element given by Kyy(j - i). Clearly one can obtain a consistent 

estimate of TI^L. from the given data. It remains to estimate F/'s to complete the design. Here 

the discussion of Sec. 3.1 becomes relevant. There we found a H0 to satisfy (3-17). From (3-9) and 

(3-17) we have 

H?v.(Jfe) = X;H?GBi8(n-0. (3"22) 
i=o 

Using (3-22) and taking expectations we have 

(3-23) E{s(n)vT(n - r)}H0 = £ Rss(r + t)G*H0. 
i=o 

Using (1-2) and (3-17) we have 

E{s{n)v*(n - r)}H0 = aFr. 

Hence, we have from (3-23) and (3-24) 

Let ndiSsLc denote a [N(Le + 1)] x [N(Le + 1)] matrix with its tj-th block element as E{s(k + d + 

j _ i)s
w(A;)}. Then (3-25) can be expressed as 

(3-24) 

(3-25) 

F?    F^x    •••   F«    0 =  a    H0 G a0     ^al G aL, 11 n 
d,ssLc' (3-26) 

Finally, using (3-6) and (3-26) in (3-21) we obtain the desired solution 

Gd,o    Gd)i    • • •   Gd,Le 
=  a    H0 INXN   0 

/R-3sLK-d,ssLc'
R'yylJt- 

The MMSE estimate w(t - d) of w(t - d) is then given by 

Le 

w(t-d) = ^Gdiiy(t-i) 
t=0 

In practice, since a is unknown, one obtains a scaled version 

Lt 

w(t-d) = X)aG^y('_i) = OLw(t-d). 

(3-27) 

(3-28) 

(3-29) 

i=0 

3.3    Algorithms: Practical Implementation 

Given data y(fc), k = 1,2, • • -,T. Pick the length Le + 1 and delay d of the MMSE equalizer. 
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3.3.1    ALGORITHM I : 

Here F0 is estimated as the unit norm H0 that lies in the null space of RVaV,. 

1.1 Estimate the correlation function of the measurements at lag m as 

T 

Jt=l 

where we take y(k +.m) = 0 if A: + m < 1 or > T.   Define the [N(Le + 1)] x [N(Le + 1)] 

matrix HyyLc with its ij'-th block element as Ryv(j - i). Carry out an eigendecomposition 

of ÜyyLc- Let \ (i = NLe + 2, ■ ■ ■, NLe + N) denote the smallest N - 1 eigenvalues of KyyLe- 

Estimate the noise variance a\ as 

, NLe+N 

a2   =   -^—     T     \. (3-31) 
" AT - 1     ^ 

The signal correlation function at lag m is then estimated as 

R„(ro) = Ryy(m) - allNxN5(m) (3-32) 

where 6(m) is the Kronecker delta function.   Define the [N{Le + 1)] X [N(Le + 1)] signal 

correlation matrix estimate USSLC with its ij'-th block element as K33(j - i). 

1.2 Now we implement (3-6). First we need to calculate 1Z*Lc. Carry out a singular value 

decomposition of KssLc leading to 1ZS3LC = USVW where £ = diag{si,i = 1,2, •••,#!« + 

N}. The rank ni of H„LC is determined as the smallest n for which 

^i=n+i   s'   < (3-33) 

where ei > 0 is a small number.  [For simulations presented in Sec' 5 we took ex = 0.001]. 

The desired pseudoinverse is then calculated as 

mt=visr^r . (3-34) 
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where Si = diag{sit i = 1,2, • • ■, m} and Ux and Vx are comprised of the left and the right 

(respectively) singular vectors corresponding to the singular values retained in Sx. Using 

(3-34) calculate 

GaQ   Gai GaLe INXN   0 -R: SsLe ' 
(3-35) 

1.3 Using (3-11) estimate R„3„3(m) as 

Lc   Lc 

where R„(ro) has been discussed in (3-30)-(3-32). Define the (LN) X N matrix 

%.v.  :=   [^"...(1) ^v3(
2)   •••  ^-.W]T- 

Carry out an SVD of RV3Vl and pick 

H0 =   'rightmost' right singular vector of Rv,Vs- 

(3-36) 

(3-37) 

(3-38) 

1.4 Define the [N(Le+1)] x [N(Le + l)] matrix Hd>saLe with its ij-th block element as RM(j-t) 

The MMSE equalizer with delay d is calculated as 

G^o   Gd,i    • • •   Gd,Le fi? JjVxJV    0 ^Ö^LÄ-     (3-39) 

error In (3-39) ft£JJ is the Pseudoinverse of 7lääLs calculated as in (3-34) except that a larger 

threshold e2 is used in (3-33) instead of et. The rank n2 ofKsaL<! is determined as the smallest 

n for which qn < e2 in (3-33) instead of qn < e1. [For simulations presented in Sec. 5 we took 

e2 = 0.01]. 

Remark 6. In (3-39) calculation of ft^J* is related to computation of some of the leading co- 

efficients of the channel impulse response whereas in (3-35) calculation of ££g is related to the 

calculation of the null space of %,,Vt. Heuristically, a higher value of e in (3-33) leads to higher 

"intersymbol interference" but lower "noise enhancement" in a zero-forcing equalizer design, and 

vice-versa. In estimating H0 via (3-38) suppression of intersymbol interference is more important 
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£S*-i>-    (3-40) 

in order to 'better define' the null space of £„,„,. In contrast, in (3-39) (also recall (3-6) and 

(3-26)) one requires a compromise between intersymbol interference and noise enhancement while 

estimating some of the channel impulse response coefficients.    □ 

3.3.2    ALGORITHM II : 

Here F0 is estimated as in Remark 4. 

11.1 Repeat step 1.1 of Algorithm I. 

11.2 Calculate the pseudoinverse ^£J* _1} of £„(L._I) as in step 1.4 of Algorithm I. Calculate 

Dx   D2   •••   DLe     = -    R,.(l)   RM(2)   •■•   R„(£e) 

Further calculate 

Lc 

R/j(0) = Rss(0) + X)DiRM(-t). (3"41) 
i-l 

Set Ho equal to the unit norm eigenvector corresponding to the largest eigenvalue of R//(0). 

11.3 Repeat step 1.4 of Algorithm I with H0 obtained from step II.2. 

3.3.3    ALGORITHM III : 

Here we will use (3-21) with F; (t = 0,1, • • •, d) estimated using the basic approach of [9] and [14]. 

Although [9] and [14] derive all their results under the assumption of FIR channels with no common 

zeros, their results extend (with straightforward modifications) to models that satisfy (H1)-(H5) 

by virtue of Lemma 1. By (2-4), we have 

W(k) =  ||F0||-
2Fo^(fc) =  HFoll^HyW (3"42) 

By (1-2) and (1-4) it follows that 

(3-43) 

t=0 

14 

s(fe) = Y,FMk-i). 



From (3-43) and (H4), we have the relations 

E{w{k - l)sn(k)} = Fj1   for   I > 0. 

From (2-3) and (3-42), we have the relations 

E{w(k-l)sn(k)} =  HFoir'Hj 

From (3-44) and (3-45) it follows that 

Rss(-0 + EDtRss(-/-i) 
1=1 

F« ITTW ilFolrHj R?.(0 + £D<R£(' + ^ 
t=i 

(3-44) 

(3-45) 

(3-46) 

Based upon the above discussion, [9] and [14], we have the following algorithm: 

ULI Repeat step 1.1 of Algorithm I. 

111.2 Repeat step II.2 of Algorithm II. 

111.3 Estimate F^ up to a scale factor as 

fH fi? 
Le 

fi.r.(o + Eö»a«(i+o 
t=i 

,    « = 0,1,- (3-47) 

III.4 The MMSE equalizer of length Le + l and with delay d is calculated (up to a scale factor) as 

Gd,o   Gdi Gd,Lc F?    fJLx    •••   F«    0 KyyLe- (3-48) 

4    Blind Equalization: Common Zeros 

Now we allow common subchannel zeros. In this case since ideally we need infinite length inverses 

and zero-forcing equalizers, the presented results hold true only approximately for finite length 

equalizers. Assume that (H1)-(H5) hold true. 

4.1    Minimum-Phase Zeros 

Here the SIMO transfer function is 

£c(z), 
T{z) 

A{z) 
B(z) (4-1) 

where B{z) satisfies (H2) and Bc(z) is a finite-degree scalar polynomial that collects all the common 

zeros of the subchannels. Assume that 
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(H6) Given model (4-1), Be{z) £ 0 for \z\ > 1. 

Then while A~1(z)B(z) has a finite inverse, B~l(z) is IIR though causal under (H6). Then (3-2) 

holds true approximately for "large" Le, the approximation getting better with increasing Le. Simi- 

larly Lemma 1 holds true approximately for "large" M and Lemma 2 also holds true approximately 

for Le > M. It is then readily seen that the developments of Sees. 3.1, 3.2 and 3.3 apply to the 

current case also. 

4.2    Arbitrary Zeros 

In this case (4-1) is true but Bc(z) does not necessarily satisfy (H6). We may rewrite (4-1) as 

T{z) = T{z)TAP{z) (4"2) 

where TAP{Z) is an allpass (rational) function such that 

Bc{z)Bc{z~l) = FAP(Z)BMP(Z) (4"3) 

and BMP(Z) is minimum-phase. Thus (within a scale factor) we have 

?w = ^"W- (4'4) 

We may rewrite (1-2) as 

y(Jfe) = J(z)w'{k) + n(fc) (4~5) 

where 

w'(k) := TAP{z)w{k). ^ 

Clearly W'(fc) satisfies (H4). Hence, (4-4)-(4-6) satisfy the requirements of Sec. 4.1. Therefore, one 

can "approximately" recover w'(k) from the given data by applying the algorithms of Sec. 3.3. 

In order to recover w(k) form w'(k), one needs to exploit the higher-order statistics of {w'(k)}; 

see [2],[3] and references therein. 
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5     Simulation Examples 

Here we consider two simulation examples to illustrate the proposed approaches. Both of the 

examples are modified versions of the example from [5]. Example 1 consists of an ARM A model 

whose MA part is taken from [5]. Example 2 consists of an MA (FIR) model where we augment 

the FIR channel of [5] with a zero at 0.5 where this zero is common to all of the four subchannels. 

For computing K^}* in (3-34) via SVD, we picked e1 = 0.001 in (3-33). For computing H\JLt 

in (3-39), or ft^t-i) in (3~40)' via SVD' we picked e* = °M m ^'3^' Moreover' ^w&. in (3~39) 

and (3-48) was also computed using SVD where all singular values smaller than 0.001 X(largest 

singular value) were neglected. Thus, calculation oiÜ~yLe was regularized. The measurement SNR 

is defined as 

SNR =  ^ s£ii{l*(*)la> 
£f=i£{k(*)l2}' 

The normalized MSE (i.e., MSE divided by E{\w(k)\2}) and the probability of detection error 

(Pe) after equalization were taken as the two performance measures after averaging over 100 Monte 

Carlo runs. The equalized data were rotated and scaled before calculating the two performance 

measures. After designing the equalizers based on the given data record, the designed equalizer 

was applied to an independent record of length 3000 symbols in order to calculate normalized MSE 

and Pe. Therefore, the estimated Pe is not reliable below approximately 10~4, hence, these values 

are not shown in Figs. 2 and 4. 

5.1    Example 1. 

We have N = 4 in (1-2) with T{z) = A~1{z)B{z) where 

A{z) = (1 - 0.5Z-
1)I3x3 , t5"1) 

and B(z) is 4 X 1 with its i-th element given by 

Bx{z) = (-0.049 + j'0.359) + (0.482 - j0.569)z_1 

+(-0.556 + jO.587)*-2 + (1.0 + jO.O)*"3 + (-0.171 + j0.061)z-4 
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B2(z) = (0.443 - jO.0364) + (1.0 + jOtyz'1 

+(0.921 - j0.194>-2 + (0.189 - J0.208);T3 + (-0.087 - J0.054)2T4 

B3(z) = (-0.211 - jO.322) + (-0.199 + j0.918)z_1 

+(1.0 + j0.0)z-2 + (-0.284 - ;0.524)z-3 + (0.136 - j0.190)z-4 

BA{Z) = (0.417 + jO.030) + (1.0 + j0.0)z_1 

+(0.873 + j0.145)z"2 + (0.285 + j0.309)z"3 + (-0.049 + j0.161)z-4. (5-2) 

The MA part B(z) is the same as the FIR channel of [5]. The scalar input w(k) is 4-QAM (as in 

[5])- 

Transfer function B(z) satisfies (H2) [5], therefore, there exists a finite left inverse of length 

Le = 4 (cf. Sec. 2.1). An MMSE equalizer of length Le = 12 (13 taps per subchannel, totaling 

52 taps: substantial overfitting!!) was designed with a delay d =3 (arbitrarily selected just for 

illustration). The Algorithms I—III were applied for various record lengths. The equalized output 

was scaled to match the true {w(k)} before computing the mean-square error (MSE) in the equalized 

output. Fig. 1 shows the normalized MSE and Fig. 2 shows the probability of error Pe, both averaged 

over 100 Monte Carlo runs. It is seen that the proposed design approaches can handle IIR channels 

with little difficulty. Algorithm II (newly proposed) performs the best with Algorithm III (based 

upon [9] and [14]) being almost as good. The performance of Algorithm I improves with increase 

in record length and it approaches that of the other two algorithms for T = 1000 symbols. 

5.2    Example 2. 

Again we have N = 4 in (1-2) but with T{z) = Bc(z)B(z) where B(z) is as in Example 1 and Bc(z) 

is a scalar polynomial given by 

Bc(z) =  1-0.5*-1. (5"3) 

Thus all four subchannels have a common zero at 0.5. The input w(k) is 4-QAM as in Example 1. 

Note that in this example a finite left inverse does not exist. 
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As in Example 1, an MMSE equalizer of length Le = 12 was designed with a delay d =3. Fig. 

3 shows the normalized MSE and Fig. 3 shows the probability of error Pe, both averaged over 100 

Monte Carlo runs. It is seen that the proposed design approaches can handle subchannels with 

common minimum-phase zeros with little difficulty. As in Example 1, Algorithm II performs the 

best. 

6    Conclusions 

Direct bünd MMSE equalization of SIMO channels using only the second-order statistics of the 

data was considered. Such channels arise when antenna arrays are used or when signals with excess 

bandwidth are fractionally sampled or when both these scenarios are applicable. Unlike the past 

work on this problem [4],[5],[8]-[14], the proposed solutions are applicable to IIR channels and to 

SIMO systems having common zeros among the various subchannels so long as the common zeros 

are minimum-phase. In case of nonminimum-phase zeros, we recover an allpass filtered version of 

the original input. 

Three approaches were proposed. Algorithms I and II are inspired by [1] whereas Algorithm 

III is a straightforward extension of [9] and [14]. Algorithm II also exploits some results from [9] 

and [14]. Two illustrative simulation examples, one consisting of an IIR channel and the other 

consisting of an FIR channel with a common zero, were presented using a 4-QAM information 

sequence. The proposed approaches work well. Algorithm II works the best (evaluated in terms of 

mean-square error and probability of detection error after equalization) with Algorithm III being 

a close second. 

Future work includes performance analysis, adaptive implementation and extension to MIMO 

scenarios involving more than one information signals. 
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FIGURE CAPTIONS 

Fig. 1.    Example 1: Normalized MSE after equalization for various record lengths (T) and SNR's, 

averaged over 100 Monte Carlo runs. 

Fig. 2.    Example 1: Probability of error after equalization for various record lengths (T) and SNR's, 

averaged over 100 Monte Carlo runs. 

Fig. 3.    Example 2: Normalized MSE after equalization for various record lengths (T) and SNR's, 

averaged over 100 Monte Carlo runs. 

Fig. 4.    Example 2: Probability of error after equalization for various record lengths (T) and SNR's, 

averaged over 100 Monte Carlo runs. 
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Multistep Linear Predictors-Based Blind Equalization Of 

FIR/IIR Single-Input Multiple-Output Channels With Common 

Zeros x 
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Tel: (334)844-1846 FAX: (334)844-1809 

Email: tugnait@eng.auburn.edu 

Abstract 

The problem of blind equalization of SIMO (single-input multiple-output) communications chan- 

nels is considered using only the second-order statistics of the data. Such models arise when a single 

receiver data is fractionally sampled (assuming that there is excess bandwidth), or when an an- 

tenna array is used with or without fractional sampling. We extend the multistep linear prediction 

approach to infinite impulse response (IIR) channels as well as to the case where the "subchannel" 

transfer functions have common zeros. In past this approach has been confined to finite impulse re- 

sponse (FIR) channels with no common subchannel zeros. We focus on direct design of finite-length 

MMSE (minimum mean-square error) blind equalizers. Knowledge of the nature of the underlying 

model (FIR or IIR) or the model order is not required. Our approach works when the "subchan- 

nel" transfer functions have common zeros so long as the common zeros are minimum-phase zeros. 

Illustrative simulation examples are provided. 

SP EDICS : 2.8.1 
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1    Introduction 

Consider a discrete-time SIMO (single-input multiple-output) system with N outputs and one input. 

The i-th component of the output at time k is given by 

yi(k)  = Tl{z)w{k) + nt{k),  i = l,2,---,N, (1-1) 

=>    y(jfe) = F(z)w{k) + n(A) = s(k) + xi{k), (1-2) 

where y(Jb) = [yx{k) :y2(k) :• • -:yw(*)]T, similarly for s(fc) and n(fc), and z is the ^-transform 

variable as well as the backward-shift operator (i.e., z-xw{k) = w(k - 1), etc.). The sequence w(k) 

is the (single) input at sampling time k, y,-(fc) is the i-th noisy output, Si(k) is the i-th noise-free 

output, rii(k) is the additive measurement noise, and 

oo 

Fi(z) := Y,fi(l)z-1 (1-3) 
1=0 

is the scalar transfer function with w(k) as the input and y^k) as the output; it represents the 

i-th subchannel. We allow all of the above variables to be complex-valued. The overall transfer 

function is denoted by the N X 1 T{z) with its i-th element as Ti{z). We have 

oo 

T(z) = EF^"1- (1"4) 

;=o 

Such models arise in several useful baseband-equivalent digital communications and other appli- 

cations. A case of some interest is that of fractionally-spaced samples of a single baseband received 

signal leading to a SIMO model [1],[4],[8]. Alternatively, a similar model can be derived when we 

have a single signal impinging upon an antenna array with N elements [5]. A similar model arises 

if we have an antenna array coupled with fractional sampling at each array-element [5]. 

In these applications one of the objectives is to recover the inputs w(k) given the noisy mea- 

surements but not given the knowledge of the system transfer function. Recently there has been 

much interest in solving this problem using only (or at least, to the maximum extent possible) 

the second-order statistics (SOS) of the data (see [1], [3]-[5], [8]-[14] and references therein). The 

solution is closely tied to existence of an FIR (finite impulse response) inverse to the system transfer 

function [1], [3]-[5], [8]-[14]. An overwhelming number of papers (see [4],[5],[9]-[12] and references 



therein) have concentrated on a two-step procedure: first estimate the channel impulse response 

(IR) and then design an equalizer using the estimated channel. A fundamental restriction in these 

works is that the channel is FIR with no common zeros among the various subchannels. A few (see 

[ljand [13]. e.g.) have proposed direct design of the equalizer bypassing channel estimation. Still 

they assume FIR channels with no common zeros. 

In this paper we allow IIR (infinite impulse response) channels (which are finitely parametrized). 

We will also allow common zeros so long as they are minimum-phase (i.e., they lie inside the unit 

circle).    Finally, in the presence of nonminimum-phase common zeros, our proposed approach 

equalizes the spectrally-equivalent minimum-phase counterpart of -F(z); it does not "fall apart" 

unlike quite a few existing approaches. Our proposed approach is inspired by that of [10] and [12] 

which have been derived and analyzed therein only for FIR channels with no common zeros. The 

basis for the proposed approach is multistep linear prediction. A one-step linear prediction-based 

approach was first proposed in [8] and later expanded upon in [9] and [14]. Unlike the subspace- 

based methods of [4], [5], [11] and others (see also [3] and references therein), the linear prediction 

(LP) based approach of [8], [9] and [14] turns out to be rather insensitive to the order of the 

underlying FIR channel (so long as one overfits). More recently, it has been pointed out in [10] and 

[12] that the LP-based approach can be further significantly improved by utilizing some additional 

information not exploited by LP. Although [10] and [12] derive their algorithms in a quite a different 

manner, their final algorithms are essentially the same. In this paper we will follow the approach 

of [12] which is based upon multistep linear prediction. As noted earlier, unlike [12] we allow IIR 

channels and common zeros. 

Two approaches are discussed in this paper for designing a bünd MMSE (minimum mean-square 

error) linear equalizer of a specified length and delay. The approaches do not require the knowledge 

of the underlying system model orders or IR length, nor do they require the knowledge of the nature 

of the model (FIR or IIR). Algorithm I is novel and is inspired by [10] and [12] whereas Algorithm 

II is a straightforward extension of [9] and [14], and it was first proposed in [18]. Note that the 

prediction error methods of [8], [9] and [14] apply to the problem under consideration with some 

straightforward extensions/modifications (as we discuss in Sec. 3.4.2). Interestingly, [8], [9] and [14] 



derive their results under the assumption of FIR channels with no common zeros. Although our 

emphasis is on MMSE equalization, estimation of a leading part of the underlying channel IR is an 

essential part of this paper. For MMSE equalization with a given delay d, it is sufficient to estimate 

the channel IR at first d+l samples, which is what is done in this paper. Clearly, if channel IR. 

estimation is the objective, then one can pick a 'large' value of d. 

The paper is organized as follows. Precise model assumptions and some background results used 

later in the paper are stated and developed in Sec. 2. IIR channels with no common subchannel 

zeros are considered in Sec. 3 where the proposed algorithm of this paper is developed. Under 

the assumptions of Sec. 3, finite length inverses and finite-length multistep linear predictors exist. 

In Sec. 4 we allow common subchannel zeros. Here ideally we need infinite length inverses and 

multistep linear predictors. Three computer simulation examples involving a 4-QAM signal are 

presented in Sec. 5 to illustrate the performance of the proposed approach and compare it with 

that of the linear prediction approach. 

2    Model Assumptions and Preliminaries: No Common Zeros 

In this section we consider precise model assumptions and some background results used later in 

the paper. In Sees. 2 and 3 we focus on systems with no common subchannel zeros. The case of 

common zeros is discussed in Sec. 4. 

Assume the following: 

(HI) T{z) = A-\z)B{z) where A{z) = 1 + ££i a^ is 1 x 1, B(z) = ££0 B;^ is JV x 1 

and N > 1. 

(H2) Rank{ß(z)} = 1 Vz including z = oo but excluding z = 0, i.e., B(z) is irreducible [7, 

Sec. 6.3]. 

(H3) A(z) ± 0 for \z\ > 1. 

(H4) {w(k)} is zero-mean, white. Take E{\w(k)\2} = 1 by absorbing any non-identity corre- 

lation of w(k) into F(z). 



(H5) {n(k)} is zero-mean with E{n{k + r)nH(k)} = (T^INKN where INxN is the N x N 

identity matrix and the superscript H is the Hermitian operator (complex conjugate 

transpose). 

Assumption (H2) is equivalent to stating that the various subchannels Fz(z) have no common zeros. 

It has been shown in [6] (using some results from [2]) that under (Hl)-(H3) there exists a finite 

degree left-inverse (not necessarily unique) of f(z): 

Q(z)T{z) = 1 (2-1) 

where Q(z) is 1 X N given by 

g(z) = Y^Giz'1    for any     Le > na + nb - 1. (2-2) 
1=0 

Remark 1: The left-inverse Q(z) of T{z) consists of two parts: g(z) = QB(z)A(z) where 

gB(z)B(z) = 1 so that Q{z)T{z) = gB(z)A(z)A-1(z)B(z) = gB(z)B(z) =1. Finite length left- 

inverses of FIR SIMO channels have been subject of intense research activities [4]-[6],[8]-[13]. Left- 

inverses to MIMO IIR/FIR channels have been considered in [6]. It appears that the results of [6] 

pertaining to MIMO models are the sharpest to date. Finally, it is important to stress that [4], 

[5] and [8]-[13] do not allow IIR channels, or subchannels having common zeros, in their problem 

formulation unlike this contribution.    □ 

2.1     MMSE Equalizer with Delay d 

We wish to design an MMSE (minimum mean-square error) linear equalizer of a specified length. 

It is not too hard to establish (using the orthogonality principle [16], for example) that the MMSE 

equalizer of length Le + 1 to estimate w(k -d)(d> 0) based upon y(n), n = k,k - 1,-■ ■ ,k - Le, 

satisfies 

Gdi0    Gdil    •••   GdiLe]   =   [*?   F*X    •••   Ff   0   •••   o]^ä. (2-3) 

where KyyLe isa[N{Le+i)]x[N(Le + l)] matrix with its ij-th block-element given by ^(j-i) := 

E{y(k + j- i)yH(k)}. The equalized output is given by 

Lc _ 

w(k-d) = £Gdiiy(fc-i)- VA> 
t=0 



Clearly one can obtain a consistent estimate of KyyLc from the given data. It remains to estimate 

Fj's to complete the design. This is where the multistep predictor approach turns out to be useful. 

3     Partial Channel Identification Using Multistep Predictors 

3.1     FIR Multistep Linear Predictors 

By (1-2) and (HI), it follows that 

s(Jfe) =  -£ais(fc-t) + £BiTi>(*--0- t3"1) 
t=l «=o 

It then follows from (3-1) that 

n0 

s(fc) =  -'^2ais(k-i)-a1 

i=2 

na 
nb 

i=l i=0 

"t 

+ E Biw(k - i) 
i=0 

Tla+l n6+l       ,   , 

= - E a^s(k ~i)+E B^<k " *)■ (3"2) 
i=2 t=0 

for some appropriate choices of the parameters a\2)s and BJ2)S. NOW substitute for s(fc - 2) using 

(3-1) in (3-3), and continuing this way, we have, in general, for appropriate choices of a{ s and 

Bfh (I > 1) 
na+l-l nb+l-l 

a(*) = - E «S!)s(*-o+ E BJV*-»)- (3-3) 
i=l t=0 

Both (3-1) and (3-3) represent the same signal/system and therefore, they must have the same 

impulse response. By (1-4), (HI), (3-1) and (3-3), it then foUows that 

B[l) = Fi   for   0 < t < I - 1. (3-4) 

Let us rewrite (3-3) as 

s(fc) = e(*|fc-0 + s(fc|*-0 (3"5) 

where 

e(k\k - I) := E B?w(k " 0 = E *>(* - 0 (3"6) 

i=o i=o 



and 
na+i-l nb+l-l 

s(k\k-l)--=~   E   a?)s(*-0+   E   BiVfc-t). (3-7) 

We first need some notations and definitions. 

Notations and Definitions: Consider the Hilbert space H of square integrable complex ran- 

dom variables on a common probability space endowed with the inner product (for sealer complex 

random variables xx and x2) < xux2 >= E{xxx*2} where the superscript * denotes complex 

conjugation (see [15]). Let SP{xi G 1} denote the subspace of H generated by the random vari- 

ables/vectors in the set {a* G I}. Let Hk(s) denote the subspace generated by the past of s up to 

time k 

Hk(s) := Sp{ Si(k - m),  t = 1,2, • • •, N;  m = 0,1, • • •} (3-8) 

and let Hk-i,L(s) denote the subspace spanned by a finite past of s 

Hk^,L{s):=Sp{Si(k-m),  i = 1,2,-■-,N;  m = 1,2, • ••,£}. (3-9) 

Let (s(ft)|JTfc_i(s)) denote the orthogonal projection of s(k) onto the subspace JTfc_i(s) [15].    O 

Theorem 1. Under (H1)-(H4) and for Z = 1,2, • • •, {s(»} can be decomposed as in (3-5) such 

that 

E{e(k\k - l)sH{k - m)}  = 0   Vm > I, (3-10) 

s(fc|fc-0  =  (s(fc)|#fc_i(s)), (3"n) 

S(fc|fc-Z)   G   fffc-I.n.+nfc+J-lCs) (3"12) 

and 

s(fc|fc-z) = (s(fc)|irfc_iina+f»t+i-i(s)). (3-13) 

The decomposition (3-5) is unique.     • 

Proof:   By (1-2), (1-4), (HI) and (H3), we have 

B(Jfe) = f^FMk-i). (3"14) 
»=o 



By (2-1), (2-2) and (1-2), it follows that 

Le 

£G;s(Jfe-t) = w(k). (3-15) 
t=0 

Substituting for w(k) from (3-15) in (3-7), it follows that 

s(fc|Jfe-Z) e Hk-i(s). (3-16) 

By (3-14) and (H4), we have 

E{w{k)sH(k - m)} = 0   Vm>0. (3-17) 

Therefore, using (3-6) and (3-17), it Mows that (3-10) is true. By (3-5), (3-10), (3-16) and 

the orthogonal projection theorem [15], it follows that (3-11) is true (as the "error" e(k\k - I) is 

orthogonal to the data s(k -m)(m> I), hence to the subspace Hk-i(s)). 

It remains to establish (3-12) and (3-13). Define 

x(A) := A(z)s(k) = B(z)w(k). (3-18) 

By the proof of Theorem 1 in [14] (and with obvious changes in notation of [14]), using (3-18) (i.e. 

x(fc) = B{z)w{k)) and (H2), we have 

fffc.M« =  HktM+nb(w)    V M > nb - 1. (3-19) 

It follows from (3-18) (i.e. x(fc) = A(z)s(k)) and (HI) that 

fffc,M(x) C  HktM+na(s)    V M > 0. (3-20) 

Therefore, (3-19) and (3-20) lead to 

Hk,M+nb(u>) C HkiM+na(s)    V M > nb - 1, (3-21) 

and in general, we have for any integer I 

Hk-hM+nb+i(w) C fffc-i,Af+n„+j(s)    VM>7ib-l. (3-22) 

It therefore follows from (3-7) and (3-22) that 

s(Jfe|fc - /) G Hk-iina+M+l(s)    V M > nb - 1. (3-23) 



If we pick M = nh - 1 in (3-23), we obtain (3-12). Finally, (3-13) follows from (3-5), (3-10), (3-12) 

and the orthogonal projection theorem [15]. 

Uniqueness of the decomposition (3-5) is a consequence of the orthogonal projection theorem 

[15]. Suppose that there exists some other decomposition 

s(ib) = e(]b|fc-0 + s(fc|fc-0 (3'24) 

such that 

E{e(k\k - l)sH(k - m)} = 0   Vm > I (3-25) 

and 

s(Jb|Jfe-0 G fTfc-i(s). (3-26) 

Then the orthogonal projection theorem [15] implies that 

E{\\s(k\k - I)-s(k\k - l)\\2} = ° (3"27) 

and 

E{\\e{k\k-l)-e(k\k-l)\\2}  = 0. (3-28) 

This completes the proof of Theorem 1.     □ 

Remark 2:    When A(z) = 1 (i.e. the channel is FIR), the results of Theorem 1 hold true with 

na = 0. Note that we may write A{z) = £"=o a.'^_t with a0 := 1.    ° 

It follows from Theorem 1 that 

Li 

s{k\k - 0 = X) AJ^sCfc - i)    where   Li > na + nb + I - 1, (3-29) 
i=l 

for some N X N matrices A^s. By (3-5) and (3-10) (recall also the orthogonal projection theorem), 

we have 

s(fc|Jfe-0  = arg{minx(fc)eHfc_((s)^{|l^)-x(fc)H2}- (3"3°) 

Therefore, s(Jfe|Ä - 1) is the Z-step (ahead) linear predictor of s(k) given {s(m),   m < k - I}. By 

(3-13) it is also the Z-step (ahead) linear predictor of s(k) given {s(m),  k - h < m < k - I}. 



Using (3-5) and (3-29) we have 

Li 

s(jfe) = ^AJ'^Jfe-O + eCfclfc-O- (3"31) 
i=i 

By (3-10) and (3-31), for m > I, 

E{s(k)sH(k - m)}  = J2 Ai°i5{s(fc - i)sH(k - m)}. (3-32) 

By the orthogonal projection theorem and (3-13), it is sufficient to consider (3-32) for m = Z,i + 

1, • • •, Li in order to solve for A^s. Using these values of m in (3-32) we may write 

A(0   A(/) 
l+i 

•   A (0 Kss(Li-l) R«(0  R..0 + 1) R«(ii) (3-33) 

where KssM denotes a [JV(M + 1)] X [N(M + 1)] matrix with its tj-th block element as R.,(j - i) 

= E{s(k + j- i)sH(k)}. Note that tt„(L,-i) is not necessarily full rank, therefore, the coefficients 

Af }s are not necessarily unique. (Note that the orthogonal projection theorem implies uniqueness 

in the sense of (3-27), it does not necessarily imply the uniqueness of the coefficients in (3-31).) A 

minimum norm solution to (3-33) may be obtained as [17] 

A(0    A(0 
■i+i 

■•   A (0 RS3(0 R„(/ + I; 'R.s.(Li) n # 
*(£i-0 

(3-34) 

where the superscript # denotes the pseudoinverse. 

3.2    Estimation of Noise Variance 

Consider the case of / = 1 (one-step prediction). By (3-6) and (3-31) we have 

Li 

s{k) = gA^sCfc-O + lW*)- 
i=l 

(3-35) 

If £i > na + ra6, then A^ = 0 for t > na + nb by virtue of (3-13). 

Lemma 1. Under (H1)-(H4), p(KssLl) <NLX + 1 for Lx > na + nb where p(A) denotes the rank 

of A.     • 

Proof:   It follows from (3-35) that 

INXN ,(1) L(1) /v^sLi F0F£    0 (3-36) 
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(3-37) 

(3-38) 

Clearly 

/>([w.   -A?>   •-   -A«^   0   •••   o])=N 

and 

p(   F0F^   0    •••   0    J   =  I- 

Using (3-36)-(3-38) and Sylvester's inequality [7, p. 655], it follows that 

p(K..Ll) + N-N(L1 + l)<l (3-39) 

which yields the desired result.    □ 

In a fashion similar to KS3M in (3-33), let TZ^M denote a [N(M +1)] X [N(M + 1)] matrix with 

its ij-th block element as Ryy(j - t) = £{y(A: +j - i)yH0)}; define similarly KnnM pertaining to 

the additive noise. Carry out an eigendecomposition of KyyLl■ Then the smallest N-l eigenvalues 

of KyyLl equal u\ because under (H1)-(H4), p(K3sLl) < NLX +1 whereas under (H5), p(nnnLl) = 

NLi + N = piKyyLi)- Thus a consistent estimate a\ of CT£ is obtained by taking it as the average 

of the smallest JV - 1 eigenvalues of HyyLi., the data-based consistent estimate of HyyLx ■ 

We will need the estimate of noise variance later to calculate ft*(Ll_i) in (3-34) for various 

I > 1. By (3-29), Li-l>na + nb-l, independent of I. This suggests that we keep 

Li-l = L > na + nb-l   (VZ). (3"4°) 

Then under (H4) and (H5), 

KSSL = ^L-KnL = KyyL - °
2

nI(Z+iML+iy (3"41) 

Thus, 11  T can be estimated from noisy data. 
1 SSL/ 

3.3    Partial Channel Identification 

Recall that our main objective is to implement the MMSE linear equalizer with delay d as specified 

by (2-3) and (2-4). To this end, we need estimates of F; for i = 0,1, • • •, d. We now show how (3-6) 

and (3-31) may be used for this purpose. 
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Let 

L - L + d+l (3-42) 

where L is as in (3-40). Rewrite (3-31) as 

L 

e(k\k-l) =  £xS°s(fc-t) (3-43) 

where 

7P = 

i=0 

INXN for i = 0 

0 for 1 < i < I - 1 

~A\
1) for Z < i < L + I 

0 for L + l + l<i<L. 

(3-44) 

By (3-40) Li = L + l, therefore, for each Z, we estimate L+l coefficients in (3-34). For Z > 2, define 

et(k) := e(k\k - I) - e(k\k - I + 1) 

EDP1^^) 
i=0 

where 

DJW-D  := äJ
0
-^

1
-^,        i = 0,l,-.I. 

By (3-44), D^'_1) = 0 VZ > 2. 

Consider the [N(d+ l)]-vector 

(3-45) 

(3-46) 

E(fc) 
1T 

^+1(k + d):.eT
d+1(k + d-l)\ .■■■:e^k + l)\eT(k\k-l) 

Using (3-43)-(3-47) we have 

E(fc) = VS(k) 

where 

S(k) sT(k + d-l): sT(k + d - 2) i • • • : sJ (k - L) 

(3-47) 

(3-48) 

(3-49) 
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is a [N(L + d)]-column vector and 

Jd+l,d)     n(<*+M) 

V  := 

D^'";    D^ 

D {d,d-\) 

0 

0 

D (d+i,d) 0 

D(a,«i-i)   j)^-1) 
L-\ L 

(2,1) 

.(1) 

0 

0 

0 

0 

DL2'1)    o 
L 

L-l 
AL1) 

(3-50) 

0 ••• 0 ■••        D 

0 •■• 0 •■■ ~0 

is a [N(d+l)} X [N{L+d)\ matrix. In (3-50) we have used the fact that DJ'
1

 
-1) = 0 VZ > 2. Using 

(3-6), (3-45) and (3-47), we have 

(3-51) E(*) = 
Frf-! 

Fn 

w(k) =: Fw(k). 

By (3-48), (3-51) and (H4), it follows that 

KEE(0) = E{E(k)EH(k)} = FFH 

^(L+,-1)^ 

Clearly /?(FFH) = 1. This suggests a method to estimate F. Calculate RB£;(0) as 

KEE{0) = V ^yy(L+d-l)       °""J(Z;+d-l)x(L-l-ci-l) VH. 

(3-52) 

(3-53) 

(3-54) 

Carry out an eigendecomposition of RBJB(0). The nonzero eigenvalue of RBE(0) is equal to A - 

||F||2. Let the corresponding unit-norm eigenvector be denoted by <5A- Then 

F = aVXQx (3-55) 

for some a such that \a\ = 1. (We have the equality FFH = \QxQ% but not necessarily (3-55) with 

a = 1.) In practice when the true values in (3-54) are replaced with their data-based (consistent) 

estimates, P(REE(0)) > 1 where RBE(0) denotes the estimate of RSs(0). In this case we pick the 

largest eigenvalue as A and the corresponding unit-norm eigenvector as Qx in order to implement 

(3-55). More details are provided in Sec. 3.4. 
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3.4    Practical Implementation 

Given data y(k), k = 1,2, • • •, T. Pick the length Le + 1 and delay d of the MMSE equalizer. (By 

(2-1) and (2-2) Le should satisfy Le > na + nb - 1. ) Let I = Le in (3-40). The following steps are 

executed to implement a practical algorithm based on the earlier discussion in Sees. 2 and 3.1-3.3. 

3.4.1     ALGORITHM I: Multistep Linear Predictors-Based Blind equalizer - MSLP 

1.1 Estimate the correlation function of the measurements at lag m as 

RyyK> = ^Ey(*+ro)yH(*) (3"56) 

k=\ 

where we take y(fc + m) = 0 if k + m < 1 or > T. Define the [N(L+ 1)] X [N(L+ 1)] matrix 

H   z with its tj-th block element as Kyy(j - i). Carry out an eigendecomposition of nyyIi. 

Let \ (i = NL + 2, • • •, NL + N) denote the smallest N - 1 eigenvalues of H^i- Estimate 

the noise variance a\ as 

T NL+N 

a2  =  -^—    T    Ai. (3-57) 
#-1    ^ 

The signal correlation function at lag m is then estimated as 

Rss(m) = Ryy(m) - d2
nINxN6{m) (3-58) 

where 8{m) is the Kronecker delta function. Define the [N{L + 1)] x [N(L + 1)] signal 

correlation matrix estimate £„E with its ij-th block element as R„(j - t). We will need 

(3-30) for m = 0,1, • • -,L + 2d (see (3-42) and (3-54)). 

1.2 Now we implement (3-34). First we need to calculate H*T Carry out a singular value 

decomposition of HssL leading to K„z = UEV* where S = diag{Si, i = 1,2, • • •, NL + N}. 

The rank n-i of H33j; is determined as the smallest n for which 

9n := 
22i=n+i a»   <e (3-59) 
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where ei > 0 is a small number. [For simulations presented in Sec. 5 we took ex = 0.01]. The 

desired pseudoinverse is then calculated as 

-ft*   = ViE^Uf (3-60) 

where Si = diag{si,i = 1,2, • • -,ni} and Ui and Vx are comprised of the left and the right 

(respectively) singular vectors corresponding to the singular values retained in Si. 

Estimate A|° for t = M +!,••-,£/, (Li = L + l) via (3-34) for 1 = 1,2,- •-,<*+! : 

Al       Al+1 L+l R„(0   R..(J + l)   •••  R..(i + 0 n*-L.    (3-6i) 

Following (3-44) set 

A;       =    { 

INXN for i = 0 

0 for 1 < * < Z — 1 

-Äj° for Z<i<Z + Z 

0 for L + l + l<i<L + d+l 

1.3 FoUowing (3-46) set 

DJ1-'-1*  := A?5 - A?_1),        » = 0,l>---,I + d+l;   Z = 2,3,---,d+l 

and 

V =   as in (3-50) with DJ",-) replaced by DJ"
0 

(3-62) 

(3-63) 

(3-64) 

Define 

itf (3-65) RBB(0) = VK^^V* 

Carry out an eigendecomposition of RBS(0) to calculate its largest eigenvalue A and the 

corresponding unit-norm eigenvector Qx. This yields the partial channel estimate up to a 

scale factor (recall (3-55)) as 

F =  VAQA- 
(3-66) 
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1.4 Following (2-3), the MMSE equalizer with length Le and delay d is calculated as 

G^o   Gd,i Gd,L< = FH^- (3-67) 

Finally the equalized signal (up to a scale factor) is given by 

w (k-d) = £G<yy(fc-0- 
i-0 

(3-68) 

3.4.2    ALGORITHM II: Linear Predictor-Based Blind equalizer - LP 

Here we will use (2-3) with F; (* = 0,1, •••,<*) estimated using the basic approach of [9] and 

[14] which utilizes one-step ahead linear predictors (I = 1). Although [9] and [14] derive all their 

results under the assumption of FIR channels with no common zeros, their results extend (with 

straightforward modifications) to models that satisfy (H1)-(H5) by virtue of Theorem 1. By (3-6) 

and (3-35), we have 

w(k) =  ||F0|r2F^e(fc|fc-l). 

From (3-14) and (H4), we have the relations 

E{w(k - l)sH(k)} = Ff   for   I > 0. 

From (3-35) and (3-69), we have the relations 

E{w(k-l)S
H(k)} =  HFoir1^ 

From (3-71) and (3-72) it follows that 

Li 

RM(-O + 5>S
1)R

"H-O 
t=i 

Ff = IIFoll"1^ RSW + EASMC+O 
t=i 

Based upon the above discussion, [9] and [14], we have the following algorithm: 

II. 1 Repeat step 1.1 of Algorithm I. 

(3-69) 

(3-70) 

(3-71) 

(3-72) 
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II.2 Execute step 1.2 of Algorithm I only for I = 1. Calculate 

Li. 

Ree(0) := Rss(0) - 53Äi1)R..(-t). (3-73) 
t=i 

Carry out an eigendecomposition of Ree(0) to calculate its largest eigenvalue A0 and the 

corresponding unit-norm eigenvector Q\0. This yields the estimate (up to a scale factor) of 

F0 as 

FQ = y^oQxo- (3-74) 

II.3 Estimate Ff up to a scale factor as 

Ff = [Ao]"1^ 1©H RSCO + E^^C+O 
1=1 

,   Z = 0,l,---,d. (3-75) 

II.4 The MMSE equalizer of length Le + 1 and with delay d is calculated (up to a scale factor) as 

Gd,o    Gd,i    ■ • •    Gd,Le 

Finally, execute (3-68). 

bd    * d-i F?   0 ft; yyLe' 
(3-76) 

4    Blind Equalization: Common Zeros 

Now we allow common subchannel zeros. In this case since ideally we need infinite length inverses 

and linear predoctors, the presented results hold true only approximately for finite length equalizers. 

Assume that (H1)-(H5) hold true. 

4.1     Minimum-Phase Zeros 

Here the SIMO transfer function is 

T{z) =  ^B(z) = JiWOO (4"1} 

where F^z) satisfies (HI), B(z) satisfies (H2) and Bc(z) is a finite-degree scalar polynomial that 

collects all the common zeros of the subchannels. Assume that 
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(H6) Given model (4-1), Bc(z) £ 0 for \z\ > 1. 

Then while Fx{z) = A~1(z)B{z) has a finite inverse, B~x{z) is IIR though causal under (H6). 

By (H6) there exists a unique scalar polynomial Qc(z) such that 

oo 

gc{z)Bc(z) =  1    where   Qe(z) =  ]£«*"' (4"2) 
t=0 

and 

oo 

£N2 < °°- (4~3) 

i=0 

Indeed, for some 0 < c*i < oo and 0 < ßi < 1, we have 

\9i\  <  airf1   Vi. (4-4) 

Using (4-l)-(4-4), (2-1) and (2-2), it follows that there exists a 1 x N polynomial G\z) such that 

for some 0 < a2 < oo and 0 < ß2 < 1, 

oo 

Q\z) = £G^> (4-5) 
i=0 

HG;!!  < a2ßf   Vi (4-6) 

and 

g\z)T(z) = l. (4-7) 

By (1-4), (HI) and (H3), for some 0 < a3 < oo and 0 < ß3 < 1, we have 

||Fi||  < o^1   Vi. 

Consider 

oo 

s(fc|fc-0  := ^F^fc-i). 

By (4-5)-(4-7) and (1-2), it follows that 

oo 

m = ^G;S(fc-i). 
t=0 

(4-8) 

(4-9) 

(4-10) 
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Substituting for w(k) from (4-10) in (4-9), it follows that 

oo /   oo \ 

s(*|* - 0 = E F<    E G™s(* -i-m)) (4-n) 
i=l \m=0 / 

oo 

=  £cBs(fc-n) (4-12) 
n=l 

where (recall that F; = 0 for i < 0) 

oo n 

Cn =   E F—G™ =   E Fn-mG^. (4-13) 
m=0 m=0 

It follows from (4-6), (4-8) and (4-13) that for some 0 < a4 < oo and 0 < /34 < 1, we have 

IIQII  < 04/3J1   Vt. (4-14) 

We now rewrite (3-14) as 

s(Jfc) =  e(k\k-l) + s(k\k-l) (4-15) 

where e(ib|Jb - I) is as in (3-6) ,but s(*|* - I) is given by (4-12). We have the following result. 

Theorem 2. Under (H1)-(H4) with T{z) in (HI) obeying (4-1), (H6) and for I = 1,2, ■ • •, {s(A)> 

can be decomposed as in (4-15) such that 

E{e(k\k-l)sH(k-m)} = 0   Vm>l, (4"16) 

and 

s(Ä|fc-0 - (s{k)\Hk.i(s)). (4-17) 

Furthermore, let 

s(Jfe|Jfe - Z, k - M) := (s(*)|fffc_i,M(s)) (4-18) 

and 

e(fc|Jb -l,k-M)  := s(fc) - S(fc|fc - J,fc - M). (4"19) 

Then 

UmM^oo ^{||e(Ä|fc - 0 - e(fc|* - *, * - M)||2}  =  0   . (4-20) 
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Proof: Eqns. (4-16) and (4-17) follow as in Theorem 1. We now turn to (4-20). It follows from 

(4-17), (4-18) and [15, Chapter 1, Lemma 3.1.b] that 

lim^oo E{\\s(k\k -I)- Kk\k -l,k- M)\\2} = 0. (4-21) 

Then (4-20) is immediate via (4-15) and (4-19). We will provide an alternative, interesting proof. 

Consider 

E{\\e(k\k -I)- e{k\k -l,k- M)\\2} = E{\\e(k\k - l)\\2} + E{\\e(k\k -l,k- M)\\2} 

-E{eH(k\k - l)e(k\k -l,k-M)}- E{eH(k\k -l,k- M)e(k\k - I)}. (4-22) 

Using (4-15), (4-17)-(4-19) and the orthogonality principle, it follows that 

E{eH(k\k - l)e(k\k -l,k-M)} =  E{eH(k\k - l)s(k)} =  E{\\e(k\k - l)\\2}. (4-23) 

Hence by (4-22) and (4-23), we have 

E{\\e(k\k -I)- e(k\k -l,k- M)\\2} = E{\\e(k\k -l,k- M)\\2} - E{\\e(k\k - l)\\2}. (4-24) 

Define 
M 

sM(k\k-l) := Y,Cns(k-n) C4'25) 
n-l 

where Cns satisfy (4-13). Then 

E{\\e(k\k-l,k-M)\\2} < E{\\s(k)-sM(k\k-l)\\2} 

= E{\\s(k)-s(k\k-l)\\2} + E{\\s(k\k - I) -sM(k\k - l)\\2} 

= E{\\e(k\k - Oil2} + E{\\s(k\k -I)- sM(k\k - Z)||2} (4-26) 

where we have used the facts that (4-18) holds true, sM(k\k - I) G Hk-iM(s) and <k\k ~ l) = 

s(k)-s(k\k - I) is orthogonal to Hk-i(s). By (4-24) and (4-26) we have 

0  <  E{\\e(k\k -I)- e(k\k -l,k- M)\\2}  <  E{\\s(k\k - 0 - M*l* " Oil'}- (4"27) 

By (4-12) and (4-25), it follows that 

s(k\k-l)-sM(k\k-l) =     ]T    Cns(fc-n). 
n=M+l 
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It then follows from (3-14), (4-14) and (4-28) that 

UmM-.cc 25{||S(fc|* " 0 " *M(k\k - 0I|2} = 0. (4-29) 

The desired result (4-20) then follows from (4-27) and (4-29).     □ 

Theorem 2 clearly implies that for M 'large enough' in (4-18), we can obtain e(fc|A: -l,k-M) 

close enough to e(k\k - I). Therefore, the approach of Sec. 3 becomes applicable to the current 

case. Note that validity of (2-3) and (2-4) is unaffected by (H6). For a fixed d and Le in (2-3) and 

(2-4), one needs to estimate F; for i = 0,1, • • •, d. To this end, one should pick a 'large' L in (3-40) 

and (3-42), and unlike Sec. 3.4, it need not be equal to Le, rather L > Le. 

Remark 3: The alternative proof of (4-20) given above may be used to obtain an upper 

bound on the approximation error in (4-20) for finite M. By (4-27) and (4-28) we have 

CO oo 

E{\\e(k\k-l)-e(k\k-l,k-M)\\2} < tvl    £       £    CnRM(m - n)C£ | . (4-30) 
(n=M+lm=M+l J 

4.2    Arbitrary Zeros 

In this case (4-1) is true but Bc{z) does not necessarily satisfy (H6). We may rewrite (4-1) as 

T{z) = T(z)FAP(z) (4-31) 

where FAP{Z) is an allpass (rational) function such that 

Bc(z)Bc(z-1) = TAP(z)BMp(z) (4-32) 

and BMP(Z) 
is minimum-phase. Thus (within a scale factor) we have 

*W = ^"M- (4"33) 

We may rewrite (1-2) as 

y(jfc) = F(z)w'(k) + n(fc) (4"34) 

where 

w'(k)  := FAp(z)w(k). (4"35) 
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Clearly w'(k) satisfies (H4). Hence, (4-33)-(4-35) satisfy the requirements of Sec. 4.1. Therefore, 

one can "approximately" recover w'(k) from the given data by applying the algorithm of Sec. 3.4. 

In order to recover tu(jfe) form w'(k), one needs to exploit the higher-order statistics of {to'(fc)}; 

see [2],[3] and references therein. 

5    Simulation Examples 

Here we consider three simulation examples to illustrate the proposed approaches. The first two 

examples are modified versions of the example from [10]. Example 1 consists of an ARMA model 

whose MA part is taken from [10]. Example 2 consists of an MA (FIR) model where we augment 

the FIR channel of [10] with a zero at 0.5 where this zero is common to all of the three subchannels. 

Finally, the channel model in Example 3 is exactly as in [10]. 

For computing K*aLe in (3-60) via SVD, we picked ex = 0.01 in (3-59). Moreover, n£Lt in (3- 

67) and (3-76) was also computed using SVD where all singular values smaller than 0.002x (largest 

singular value) were neglected. Thus, calculation of n^Lt was regularized. The measurement SNR 

is defined as 

SNR _ s£i*{l«(*)ia} 

The normalized MSE (i.e., MSE divided by E{\w(k)\2}) and the probability of detection error 

(Pe) after equalization were taken as the two performance measures after averaging over 100 Monte 

Carlo runs. The equalized data were rotated and scaled before calculating the two performance 

measures. After designing the equalizers based on the given data record, the designed equalizer 

was applied to an independent record of length 3000 symbols in order to calculate normalized MSE 

and Pe. Therefore, the estimated Pe is not reliable below approximately 10"4, hence, these values 

are not shown in Figs. 1-3. 

5.1     Example 1: IIR Channel With No Common Zero 

We have N = 3 in (1-2) with T{z) = A~1(z)B(z) where 

A{z) = (1 - O.öz-^Iaxa (5_1) 
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and B(z) is 3 x 1 MA(6) obtained from [10] as follows. Consider a raised cosine pulse p6(t,0.1) 

with a roll-off factor 0.1, truncated to a length of 6TS (T. = symbol duration). As in [10], a two-ray 

multipath channel with (effective) impulse response 

h(t) = P6(t,0.1) - 0.7p6(t - rs/3,0.1) (5"2) 

was sampled at intervals of Ts/3 (starting at t = -3T.) to create the B(z) above. Transfer function 

B{z) satisfies (H2) [10], therefore, there exists a finite left inverse of length Le = 6 (cf. Sec. 2). 

The scalar input w(k) is 4-QAM. An MMSE equalizer of length Le = 8 (9 taps per subchannel, 

totaling 27 taps — overfitting) was designed with a delay d =3 (arbitrarily selected just for 

illustration). The Algorithms I (MSLP) and II (LP) were applied for record lengths T = 250 and 

500 symbols with varying SNR's. In order to apply MSLP, we picked L = Le = 8 (> na + nb - 1 = 

1 + 6 - 1 = 6) in (3-40). We picked Lx = Le = 8 for LP in (3-73) and (3-75). Fig. 1 shows the 

normalized MSE and the probability of error Pe. It is seen that the proposed design approach can 

handle IIR channels with little difficulty. Algorithm I (MSLP) performs the best. 

5.2    Example 2: FIR Channel With Common Zero 

Again we have N = Z'm (1-2) but with F(z) = Bc(z)B(z) where B(z) is as in Example 1 and Bc(z) 

is a scalar polynomial given by 

Bc{z) =  1-0.5*-1. (5~3) 

Thus aU three subchannels have a common zero at 0.5. The input w{k) is 4-QAM as in Example 

1. Note that in this example a finite left inverse and finite-length multistep predictors do not exist. 

First, as in Example 1, an MMSE equalizer of length Le = 8 was designed with a delay d =3. The 

various design parameters for MSLP and LP (I and Lx) were as in Example 1. Fig. 2 shows the 

normalized MSE and Pe. We also tried a longer equalizer with Le = 12 and d = 3. Furthermore, 

we picked L = Le = 12 for MSLP and Lx = Le = 12 for LP. The normalized MSE and Pe for this 

choice is shown in Fig. 3. It is seen from Figs. 2 and 3 that the proposed design approach can handle 

subchannels with common minimum-phase zeros with little difficulty, and that the approaches are 

not unduly sensitive to the choice of the various parameters involved. As in Example 1, Algorithm 

I performs the best. 
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5.3    Example 3: FIR Channel With No Common Zeros 

This channel is exactly as in [10] with N = 3 in (1-2) and T{z) = B(z) where B(z) is as in Example 

1. As in Example 1, an MMSE equalizer of length Le = 8 was designed with a delay d =3 and the 

design parameters for MSLP and LP were kept unchanged. Fig. 4 shows the normalized MSE and 

Pe. As in the earlier examples, MSLP outperforms LP. 

6     Conclusions 

Direct blind MMSE equalization of SIMO channels using only the second-order statistics of the data 

and the multistep linear prediction approach was considered. Such channels arise when antenna 

arrays are used or when signals with excess bandwidth are fractionally sampled or when both 

these scenarios are applicable. Unlike the past work on this problem [4],[5],[8]-[14], the proposed 

solution is applicable to IIR channels and to SIMO systems having common zeros among the various 

subchannels so long as the common zeros are minimum-phase. In case of nonminimum-phase zeros, 

we recover an allpass filtered version of the original input. 

Computer simulation examples show that the multistep linear predictors-based MMSE equalizer 

outperforms the one-step linear predictor-based MMSE equalizer by a wide margin. 

Future work includes performance analysis, adaptive implementation and extension to MIMO 

scenarios involving more than one information signals. 
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EXAMPLE 1: IIR channel, 9X3 taps 
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Fig. 1. Example 1: Probability of detection error and normalized MSE after equalization ^ various 
SNR's averaged over 100 Monte Carlo runs. Left column: record length T=250 symbols, 
rScdumnf record length T=500_symbols. Solid lines: Algorithm II (LP); dotted hnes: 

Algorithm I (MSLP). Parameters: L = Le = L\ - 8. 



EXAMPLE 2: FIR channel with common zero, 9X3 taps 
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Fig. 2. Example 2: Probability of detection error and normalized MSE ^ ^f^.^lZ 
SNR's averaged over 100 Monte Carlo runs. Left column: record length T=250 symbols, 
riglft c'olumn"record length T=500_ symbols. Solid lines: Algorithm II (LP); dotted hues: 

Algorithm I (MSLP). Parameters: L = Le = L\ - 8. 



EXAMPLE 2: FIR channel with common zero, 13X3 taps 
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SNR's averaged over 100 Monte Carlo runs. Left column: record length T=250 symbols; 
right column: record length T=500_ symbols. Solid lines: Algorithm II (LP); dotted lines: 
Algorithm I (MSLP). Parameters: L = Le = L\ = 12. 



EXAMPLE 3: FIR channel: no common zeros; 9X3 taps 
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Fig 4. Example 3: Probability of detection error and normalized MSE after equalization for various 
SNR's, averaged over 100 Monte Carlo runs. Left column: record length T=250 symbols; 
right column: record length T=500_ symbols. Solid lines: Algorithm II (LP); dotted lines: 
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Abstract 

This paper is concerned with the problem of blind separation of independent signals (sources) 

from their linear convolutive mixtures. The problem consists of recovering the sources up to shaping 

filters from the observations of MIMO system output. The various signals are assumed to be linear 

non-Gaussian but not necessarily i.i.d. (independent and identically distributed). Recently an 

iterative, normalized higher-order cumulant maximization based approach was developed using 

the fourth-order normalized cumulants of the "beamformed" data. This approach was source- 

iterative, i.e., the sources were extracted (at each sensor) and cancelled one-by-one, in the process 

yielding a decomposition of the given data at each sensor into its independent signal components. 

In this paper an adaptive implementation of the above approach is developed using a stochastic 

gradient approach. Some further enhancements including a Wiener filter implementation for signal 

separation and adaptive filter reinitialization are also provided. Computer simulation examples are 

presented to illustrate the proposed approach. 
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1    Introduction 

Given noisy measurements y;(fc), (t = 1,2,---,N), at time k at N sensors, let these measurements 

be a linear convolutive mixture of M source signals Xj(k), (j = 1,2, • ■ •, M): 

M 

=>    y(Jfe)  = W(z)x(fc) + n(fc), C1'2) 

where tj-th element of U(z) is üy(z), y(A) = [yi(k)\y2(k)':-■-'-.y^k)]7, similarly for x(fc) and 

n(&), z-1 is both the backward-shift operator (i.e., z~1x{k) = x(k- 1), etc.) as well as the complex 

variable in the ^-transform, Xj(k) is the j'-th input at sampling time k, y,(fc) is the i-th output, 

n;(fc) is the additive Gaussian measurement noise, and 

oo 

Ua(z)  :=    E  ««(0*-' (1"3) 

is the scalar transfer function with Xj(k) as the input and y^k) as the output. We aUow all of the 

above variables to be complex-valued. 

Suppose that we design a MIMO dynamic system €{z) with N inputs and M outputs such that 

the overall M x M system 

T(z) := £(z)U(z) I1"4) 

decouples the source signals. Following the 2 X 2 case considered in [7], this implies that we must 

have (Tij(z) denotes the ij'-th element of T(z)) 

Tij(z)    =0   for   i?ij (1.5) 

^ 0   for   i = ij 

where i = 1,2, ■ ■ •, M; j = 1,2, • • •, M and ij G {1,2, • • •, M} such that iy ^ if for j ? I. That is, 

in every column and every row of T(z) there is exactly one non-zero entry. In a blind separation 

problem, the nonzero entries of T(z) are allowed to be a scalar linear system (shaping filter), unlike 

the equalization problems where they must be constant gains and/or pure delays. 

The problem considered above arises in a wide variety of applications: in array processing for 

wideband sources under multipath propagation, in speech enhancement ("cocktail party" problem), 

and in noise cancellation where the reference microphone does not measure noise alone ("crosstalk"); 



see [l]-[8], [20], [23]-[25], [29]-[33] and references therein. Blind source separation becomes neces- 

sary when the propagation between sources and sensors can not be accurately modeled for lack of 

knowledge of multipath environment, unknown (or imprecisely known) array manifold, etc. Sepa- 

ration of sources differs from blind equalization [9],[10],[13],[14],[17] in that the source signals are 

not necessarily i.i.d. (independent and identically distributed). 

The problem of blind source separation has received increasing attention in the past few years 

beginning with [1]. The work done can be classified into two broad categories based upon the 

underlying propagation model: instantaneous mixtures and convolutive mixtures. In linear instan- 

taneous mixture models the transfer function U(z) in (1-2) is a constant matrix (called the mixing 

matrix). This case arises for narrowband signals where any multipath produces relative delays 

small enough to cause just a phase shift [33]. The work reported in [1], [3]-[6], [8], [16], [29], [33] 

and [12] deals with this class of models; this list is by no means exhaustive, see also references 

therein. The general model (1-2) represents a linear convolutive mixture. The work reported in [2], 

[7], [17], [19], [20], [30]-[32] and [11] (and references therein) deals with linear convolutive mixture 

(dynamic mixing) models. In this paper we consider dynamic mixing where we aUow N > M (N = 

number of sensors, M= number of sources) with M arbitrary, whereas quite a few existing papers 

are restricted to either M = N = 2 ([7],[24],[25]) or M = N ([2],[17],[11]). 

Past work on separation of convolutive mixtures may be categorized into several classes: time- 

domain approaches ([2], [17], [19], [20], [23], [24], [25], [30], [31], [11]), frequency-domain approaches 

([7],[32]), adaptive (recursive) approaches ([17], [24], [25], [30]), and non-recursive (batch) ap- 

proaches ([2], [7], [8], [18]-[20], [23], [24], [30], [32], [11]). In this paper we present time-domain 

adaptive approaches. As noted earlier quite a few of existing approaches are limited either to 

M = N = 2 ([7], [24], [25]) ortoM = JV ([2],[17], [11]). Although [31] and [32] treat a general 

case, their analyses are restricted to the case of two sources (M = 2). In this paper we consider a 

general case of N > M with M arbitrary. 

A key assumption made in this paper is that the various sources emit linear non-Gaussian 

signals (i.e., signals that can be represented as the output of a stable linear system driven by an 

i.i.d. non-Gaussian sequence); this assumption also appears in [19],[20] and [11]. This assumption 

is clearly satisfied by most digital communications signals. This allows one to treat the problem (or 

a crucial part of it) as a (blind) linear system identification problem using higher-order statistics. 
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Therefore, existing results on blind system identification ([9], [10], [13], [19]-[21] and [11]) become 

quite relevant; however, most of these papers investigate non-recursive approaches. 

As noted earlier blind source separation is not blind equalization. It is separation of a dynamic 

mixture of signals into its independent component signals (or a linearly filtered version thereof). 

In [7] (and others) this is handled by assuming that (for M = N) the diagonal entries of U{z) 

are unity. We will not follow this approach as it is not clear how to extend this to N > M, and 

moreover, we allow a row of U(z) to be identically zero ("faulty" sensor) so that it may not always 

be possible to make such a choice. Our objective in blind separation is to decompose y(k) of (1-2) 

into its independent components lß\z)xi{k) (U®(z) denotes the t-th column of W(z)) without 

having a prior knowledge of U(z). A batch (non-adaptive) version of this paper appears in [23]. 

Independently of [23], a similar approach using only second-order statistics appeared in [30]. In 

[30] it is required that rank{W(z)} = M for any z (including z = oo but excluding z = 0) whereas 

we require rank{W(z)} = M only for \z\ = 1. Note that the rank restriction of [30] implies that 

N > M for nontrivial systems (else for N = M, U(z) will be unimodular, i.e., its determinant 

is a constant.)  In our formulation we allow N > M.   On the other hand, [30] does not require 

the signals {x(A)} to be non-Gaussian or linear since any stationary second-order process admits 

a linear representation (Wold's decomposition [15]). However, our formulation relies crucially on 

{x(fc)> being linear non-Gaussian. Finally, given {y(fc)}, we also seek a minimum mean-square error 

(MMSE) estimate of U^{z)xi(k) whereas [30] (or [11]) does not. A system identification approach 

to blind source separation is followed in [19], [20] and [11].  However, the results in these papers 

deal with identifiability issues and no specific algorithm for source separation has been provided 

therein. Moreover, the MMSE source separation approach considered this paper is not considered 

in [19], [20] and [11]. 

We now turn to a brief review of past work on adaptive blind system identification as it re- 

lates to the problem under consideration. An interesting input-iterative adaptive approach using 

prewhitened observations and the fourth-order cumulant of the inverse-filtered data at zero-lag has 

been considered in [21] and [17]. The inverse filter is constrained to have a lossless filter structure 

which is realized using a lossless lattice filter. Such a restriction can lead to ill-conditioning of the 

algorithm of [21] as one iteratively extracts input sequences. A fix to this is proposed in [17] but it 

works only for the two-input case. Refs. [21] and [17] are restricted to 'square' systems: number of 



inputs (M) equal to the number of outputs (N), whereas in this paper we allow N > M, a common 

occurrence in array processing. Moreover, in this paper we perform no prewhitening, rather we 

operate directly on the given measurements. A consequence of this is that the ill-conditioning of 

[21],[17] referred to above does not occur in our approach. Refs. [21] and [17] are restricted to 

real-valued data whereas we also consider complex-valued observations. 

In [23] an iterative, inverse filter criteria based approach has been developed for blind separation 

of multichannel non-Gaussian processes using the fourth-order normalized cumulants of the inverse 

filtered data at zero-lag. The approach is input-iterative, i.e., the inputs are extracted and removed 

one-by-one. The matrix impulse response is then obtained by cross-correlating the extracted inputs 

with the observed outputs. A by-product of this approach is a decomposition of the given data at 

each sensor into its independent signal components, thereby achieving blind signal separation. In 

this paper we develop a stochastic gradient-based "recursification" of all of the batch optimization 

steps in [23]. 

The paper is organized as follows. The precise model assumptions and our basic approach to 

blind separation of convolutive mixtures are described in Sec. 2. The inverse-filter criteria-based 

approach of [13], the underlying identifiability results and the source separation solution implicit 

in the solution of [13] (see also [23]) are all briefly discussed in Sec. 3. In Sec. 4 we develop a 

stochastic gradient-based "recursification" of all of the batch optimization steps discussed in Sec. 

3. An MMSE solution with controlled delay (d in Sec. 5), to the problem of blind signal separation 

given the channel impulse response estimates is discussed and analyzed in Sec. 5. Finally, two 

computer simulation examples are presented in Sec. 6 to illustrate the proposed approaches. 

2    Model Assumptions and Signal Separation 

We impose the following conditions on model (l-l)-(l-2): 

(AS1) N > M, i.e., there are at least as many outputs as inputs. 

(AS2) The vector sequence (x(fc)} is stationary, its various components are mutually inde- 

pendent, and the coupling system (i.e. the transfer function U(z)) is stable. Moreover, 

{x(/s)} is linear, i.e. 

x(fc) = V(z)w(*), t2'1) 



where {w(fc)} is a zero-mean, M-vector stationary non-Gaussian process, temporally 

i.i.d. and spatially independent, with nonzero fourth cumulants. Because of the mutual 

independence of the components of x(fc), we take V(z) to be diagonal. 

(AS3) Consider the composite system 

y(fc)  = U{z)V{z)w{k) + n(fc)  =: T(z)vr(k) + n(fc). (2-2) 

Assume that rank{Jr(z)} = M for any \z\ = \. 

(AS4) Since the composite system is causal, we have 

Hz) = £F<*"' - EF'*~f- (2"3) 

1=0 1=0 

(AS5) The noise {n(Jfe)} is a zero-mean, stationary Gaussian sequence independent of {w(fc)}. 

Moreover, it is ergodic. 

Note that by (AS2) and (AS3), the statement rank{^(z)} = M for any \z\ = 1 is equivalent to the 

statement rank{W(z)} = M for any \z\ = 1. Since T(z) is stable, for IIR models (2-3) acts as a 

"good" approximation for large L. We will not require precise knowledge of L in the sequel. It is 

convenient to assume an FIR model. We will denote the tj-th element of T{z) is F^z). 

Let J#\z) denote the t-th column of T{z).   In blind convolutive signal separation we are 

interested in decomposing the observations at the various sensors into its independent components. 

That is, our objective is to estimate &%z)wi{k) for i = 1,2, • • •, M given {y(A:)} without having 

a-prior knowledge of T{z). Note that this is different from the solutions in [2] and [7] (and others) 

where one obtains a "single" estimate of x,-(fc) (or a "shaped" version of it): recall (1-4) and (1-5). 

By discarding all but one of the N entries of the ^-vector FW(z)v>i(k), we can get the solution 

specified by (1-5).   Because of inherent scale and shift ambiguities (see Remark 1 in Sec. 3) we 

will end up estimating a scaled and shifted version of J^\z)v>i(k). Thus, by assuming linearity 

of {x(&)} (cf. (2-1)), we have converted the blind signal separation problem into a blind MIMO 

channel identification and deconvolution problem to which a solution exists in [13]. It was shown 

in [23] as to how the solution of [13] applies to the current problem. In this paper we develop an 

adaptive implementation of of the approach of [23]. Also, the deconvolution solution of [13] is not 

necessarily an MMSE (minimum mean-square error) solution. To remedy this and to design MMSE 

estimators with "controlled delay" (d in Sec. 5), we also consider other modifications.  Using the 



Channel identification results of [13], we consider designing adaptive MMSE estimates of (scaled 

and shifted versions) of Jr(-t\z)wi(k). 

3    An Iterative Solution Based on Inverse-Filter Criteria 

In [13] an iterative, inverse filter criteria based approach has been developed for deconvolution of 

multichannel non-Gaussian processes using the fourth-order normalized cumulants of the inverse 

filtered data at zero-lag. In [23] this approach has been applied to the blind convolutive signal 

separation problem using a non-recursive algorithm. The approach is input-iterative, i.e., the inputs 

are extracted and removed one-by-one. The matrix impulse response is then obtained by cross- 

correlating the extracted inputs with the observed outputs. In this paper we develop a stochastic 

gradient-based "recursification" of aU of the batch optimization steps in [13] and [23]. In this section 

we briefly discuss the batch (non-recursive) approach of [23]; its adaptive version is developed in 

Sec. 4. 

Let CUM4(iu) denote the fourth-order cumulant of a complex-valued scalar zero-mean random 

variable w, defined as 

CUM4(™) := cumA{w,w*,w,w*} = £{M4} - 2[E{\w\2}}2 - \E{w2}\2 (3-1) 

where * denotes complex conjugation [15]. We will use the notation 74^ = CUM4(w;(fc)) and 

CT2 . _ E{\wi(k)\2}. Consider an 1 X N row-vector polynomial equalizer (filter) CT(z), with its j-th 

entry denoted by Cj(z), operating on the data vector y(k). Let the equalizer output be denoted by 

e(k): 

e(k) = £ &(*)»(*)• (3"2) 
t=i 

Following [13] consider maximization of the cost 

_   lCUM4(e(fe))l (3.3) 
-   [E{\e(k)\2}}2 

for designing a linear equalizer to recover one of the inputs.  It is shown [13] that when (3-3) is 

maximized w.r.t. C(z), then (3-2) reduces to 

e(fc)  =  dwjo(k-k0), t3"4) 



where d is some complex constant, k0 is some integer, j0 indexes some input out of the given M 

inputs, i.e., the equalizer output is a possibly scaled and shifted version of one of the system inputs. 

It has been established in [13] that under (AS1)-(AS4) and no noise, such a solution exists and if 

doubly-infinite equalizers are used, then all locally stable stationary points of the given cost w.r.t. 

the equalizer coefficients are also characterized by solutions such as (3-4). 

An source-iterative solution is given by: 

Step 1. Maximize (3-3) w.r.t. the equalizer C(z) to obtain (3-4). Let 

74io  = CUM4(e(fc)) = CUM4(<K,(ä)). (3"5) 

Step 2. Cross-correlate {e(k)} (of (3-4)) with the given data (2-2) and define a possibly scaled 

and shifted estimate of fij0(r) as 

_   E{yi(k)e*(k-T)} (3.6) 
Iijo{T)  — E{\e(k)\2} 

where i*r(z) = Ez=-oo fij(l)z~l-  Consider now the reconstructed contribution of e(k) 

to the data y^k) (* = 1,2, • • •, N), denoted by yi,j0(k): 

Kjb(*):=£ftb(JM*-0- (3~7) 

l 

Step 3. Remove the above contribution from the data to define the outputs of a MIMO system 

with N outputs and M - 1 inputs. These are given by 

y'i(k) := yi(k)-ylljo(k). (3-8) 

Step 4. If M > 1, set M *- M - 1, ift(fc) <- y-(fc). and §° back to Step X' else quit" 

In practice, all the expectations in (3-6) are replaced with their sample averages over appropriate 

data records. 

It has been shown in [13] that 

wob(*) = £/*(0«Ä(*-0, (3"9) 

i.e., we have decomposed the observations at the various sensors into its independent components: 

yiijo{k) in (3-9) represents the contribution of {wjo(k)} to the t-th sensor achieving blind signal 

separation. 

Remark 1.      It has been shown in [13] that under the conditions (AS1)-(AS4) and no noise, 

the proposed iterative approach is capable of blind identification of a MIMO transfer function 



T{z) up to a time-shift, a scaling and a permutation matrix provided that we allow doubly-infinite 

equalizers. That is, given F(z), we end up with a A(z) where the two are related via 

A{z) = f(^)DAP (3-10) 

where D is an M X M "time-shift" diagonal matrix with diagonal entries such as z~ko (recall (3-4)), 

A is an M x M diagonal scaling matrix, and P is an M x M permutation matrix. The following 

result has been proved in [13]. 

Theorem 1[13]: Given the model (2-2) such that n(A) = 0 and given the true 4th-order and 

2nd-order cumulant functions of the model output {y(fc)} such that conditions (AS1)-(AS4) hold 

true. Suppose that doubly infinite equalizers are used in steps 1-4 of the iterative procedure of Sec. 

3. Then this procedure yields a transfer function A(z) satisfying (3-10).   •     □ 

Remark 2. The results of [13] are based upon the use of doubly-infinite inverse filters. If we 

assume that T{z) has finite impulse response (FIR) and rank{JF(z)} = M for any z (including 

z = oo but excluding z = 0), then finite length inverse filters suffice. For an analysis and further 

elaborations, see [22] and [16] where a Godard cost function is considered but the results of [22] and 

[16] can be easily modified to apply to the cost (3-3) and the basic conclusions remain unchanged. 

The following result follows from [13] and [16]. 

Theorem 2: Given the FIR model (2-2) such that n(k) = 0 and conditions (AS1) and (AS4) 

hold true. Suppose that steps 1-4 of the iterative procedure of Sec. 3 are used and the record length 

tends to infinity. Then this procedure yields a transfer function A(z) satisfying (3-10) if one of the 

following holds true: 

(A) Rank{Jr(z)} = M for any z (including z = oo but excluding z = 0), and doubly-infinite 

equalizers are used. 

(B) Rank{^(z)} = M for any z (including z = oo but excluding z = 0), T{z) is column-reduced 

and FIR equalizers with length Le > (2M - \)LC - 1 are used where Lc = channel length. 

•     D 

4    Adaptive Algorithm 

In this section we develop a stochastic gradient-based "recursification" of all of the batch opti- 

mization steps discussed in Sec. 3. Theorems 1 and 2 of Sec. 3 motivate and justify the algorithm 



developed in this section. 

4.1     First Stage Maximization of Normalized Fourth Cumulant 

Let the length of the equalizer C(z) be Le and let 

L«-l 

Ci(z)  =   £ Ci(l)z-1. 
1=0 

This allows us to rewrite (3-2) as 

e(k) = fyZ ci(l)yi(k - I) = CTY(k) 
i=l   1=0 

where 

Y(*)=[yr(fc)   Y2
T(k)   ■■■   Y$(k)}   , 

Yi(k) = [ yi(k)   yi(k - 1)    • • •   yi{k - Le + I) 

T 

c(*)=   cx
T c2

T 

and 

Ci=     ci(0)   Ci(l)    •••   Ci(Ie-l) 

Define 

m4 = E{\e(k)\4},   m2  = £{|e(fc)|2},    m2  = f?{c2(Ä)}. 

Then showing explicit dependence upon C, (3-3) may be rewritten as 

J(C) = sgn(74) 
77Z4 — |77l2| 

m2 

where 

74 =  m4 - 2 m2 - |m2|
2. 

(4-1) 

(4-2) 

(4-3) 

(4-4) 

(4-5) 

(4-6) 

(4-7) 

(4-8) 

(4-9) 

Let VC denote a gradient operator (w.r.t. a vector C). We will follow [26] in formally defining 

the complex derivatives. Then we have 

Vc.e(fc) = 0   and    VC* e*(fc) = Y*(k). (4"10) 
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Using the above results in (4-7) we have 

Vc,m4 = 2E{e\k)e*(k)Y*(k)},    Vc*™2  = E{e(k)Y*(k)} (4-11) 

and 

VC'^2  = 0,    Vc-™2 = 2E{e*(k)Y*(k)}. (4-12) 

Using (4-8)-(4-12) and after some simplification, we have 

VC^(C) = 

^3^lA \m2E{\e(k)\2e(k)Y*(k)} - m2m2E{e\k)Y\k)} - [m4 - \m2\2]E{e(k)Y*(k)}} .(4-13) 
m|       •- 

We will use a stochastic gradient method for recursification of maximization of J(C) using an 

'instantaneous' gradient as an estimate of (4-13). Given the estimate C(fc - 1) of the tap-gains at 

time k - 1, the stochastic gradient method computes the update C{k) at time k as 

C(Jb) = C(Jfe - 1) + pi VC* h(C(k - 1)) (4-14) 

v ;       ||C(fc)|| 
where m is the update step-size and Vc-A(C(* - 1)) is an instantaneous gradient of the cost J 

(w.r.t. C*) at time Jfe evaluated at C(fc - 1).   Since the cost J is invariant any scaling of C, we 

normalize C in (4-15) to have a unit norm. From (4-13) we have the approximation 

Vc*Jk(C(k)) = sgn(74fc)-^r { H* (e2(fc) - ™2fc) e*W - {™Ak - \m2kf) e(k)\ Y*(k)} (4-16) 

where 

m2k = (1- ß2)m2{k_l) + fM2\e(k)\2, (4"17) 

fh2k =  (1 - M2)w2(fc-i) + M2e2(fc), " (4~18) 

m4fc = (1 - ft)n»4(]fe-i) + ^2|e(A;)|4, (4"19) 

74fc = mAk-2m2
2k-\m2k\2 (4'2°) 

and 

c(fc) = CT(k)Y(k). (4-21) 

In (4-17)-(4-19) the various quantities represent estimates based upon sample averaging, the (ex- 

ponential window) memory being controlled by the forgetting factor p2 (0 < /i2 < 1). The initial- 

izations for (4-17)-(4-19) are: m20 = m40 = ™2o = 0. 
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4.2    First Stage Signal Cancellation 

Now we discuss implementation of (3-6) via sample averaging using an exponential window con- 

trolled by a forgetting factor fj,3. Define (Li,L2 > 0) 

{/;(™)}n=-Z,i   =  imPulse response from  {e{k)}  (input) to {#(*:)}  (output) (4-22) 

and 

FT /i(n)   /2(n)    •••   fN{n) 
T 

(4-23) 

By Sec. 3, when (4-8) is maximized, e(k) satisfies (3-4) so that for suitable choice of Lx and L2, 

there exists a j0 G {1,2, • • •, M} such that 

£/<*(iK,(*-0 = £   Fj[e(*-n) 
n=—Li 

1=1,2,..-,^, (4-24) 

il 

where [A]y denotes the ij-th element of the matrix A. Note that (4-24) (cf. (3-7)) represents the 

contribution of the extracted source at stage 1 to the measurement at time k at the i-th sensor. 

In order to implement (3-7) and (3-8), we need recursive estimates of Fn. The estimate Fn(&) of 

Fn at time k is provided by 

Fn(Ä) = ^(k)/mee(k) (4-25) 

where 

mee(k)  =  (1 - fi3)mee(k - 1) + H3\e(k)\2, (4-26) 

Kn(k)  =  (1 - M3)Rn(^ - 1) + W(k)e*(k - n). (4-27) 

4.3    Multistage Algorithm 

In Sees. 4.1 and 4.2 we discussed the first stage of the algorithm where we have JV sensors and M 

sources. Now we put it all together following the source-iterative solution of Sec. 3 and discuss 

extraction of M sources including the cancellation of the extracted sources. We will use the super- 

script (m) to denote the various quantities pertaining to stage m. These have been used previously 

in Sees. 4.1 and 4.2 without this superscript; for instance, C(m)(Ä:) now denotes the estimate of the 

tap-gain vector at time k at stage m, etc. 

Initialization: 
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YW(ä) =   as in (4-3), and yM(k) = y(k). (4-28) 

DO FORm = 1,2,---,M: 

C(-)(A) = c<m>(Jfe - 1) + /xi Vc- 4m)(c(m)(fc - 1)) (4"29) 

C(»)(fc) =     5(m)(fc) (4-30) 
1 j       ||C<«0(*)ll 

where 

vo4ro)(c("0(fc)) = sgu^-^ih^^2^-^)^^^ 
m2fc 

- (m&} - Iä&V) «(m)(*)] Y<"*(*)} , (4-31) 

^ = (i-^)^(L)-1, + ^(m)(*)la, (4"32) 

ÄSr'Mi-^^ + ^w. !4-33) 

m£>  =  (1 - /x2)m^_1} + /*2|e^(fc)|4, (4"34) 

7Sr) = »*&,-2«4T)a-iÄ&)i2 (4-35) 

and 

e(-)(fc) = C^T(k)Y^m\k). (4-36) 

Set 

fm\k) =     jr   f^\k)e^m\k-n) (4-37) 

where y(m)(fc) represents (cf. (3-7)) the contribution of the extracted source at the m-th 

stage to the measurements at time A;, and where (n = -ii, -£i + 1, • • •, £2) 

F^m)(fc) = ^t\k)/mt\k), (4-38) 

"&>(*)  =  (1 " 03)m£>(* - 1) + ^3|e^(fc)|2, (4"39) 
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RM(k) =  (1 - fiz)R^\k - 1) + ^y(m)(Ä)c(m)*(Ä - n) (4-40) 

and 

s(»0, y(^\k)  =  y^m\k) - f   \k). (4-41) 

Define 

Y}m\k) =   [  jjH(jfe)     jjH(fc-l)     •••     ^m)(^-Ie + l)] 

where ^m)(fc) denotes the i-th component of y(m\k). Set 

Y<ra+1>(Ä) = [ Y}m+1)T(k)   Y}m+1)T(k)   •••   4m+1)T(fc)] 

(4-42) 

(4-43) 

where 

r(m+l) Y>m+l){k) = y>m;()t) (»)/ y(™) 
(*)■ 

(4-44) 

ENDDO 

The sequence {y(m)(*:)} in (4-37) represents the contribution of the extracted source at the 

m-th stage to the measurements at time A;. 

Remark 3. If M were unknown the proposed approach will still work in the sense that if M were 

underestimated, some sources will be missed but the extracted sources will correspond to one of the 

sources. If M were overestimated, all the sources will be recovered in addition to some "meaningless 

junk" outputs in stages M0 + 1 and later where M0 denotes true number of sources. Indeed one 

can test the 'residuals' (4-44) (see also (3-8)) to check if any significant non-Gaussian components 

remain in the data before implementing another equalizer in parallel. We do not pursue this aspect 

in this paper.     □ 

Running Cost. To monitor the convergence of the equalizers in various stages of the algorithm, 

it is useful to calculate a running cost (4-8) without the sign. Let j£m) denote the running cost for 

the m-th stage at time k, given by 

(m)   _   ™4fc 
(m)     i-^,(m)|2 

Jk      - 

m 2k 

m 
(m)2 
2k 

-2 (4-45) 
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where 

m£>  =  (1 - /M)n4c2-i) + /^(m)(*)|2» (4"46) 

m£> = (l-^J^-D + ^^C*), I4'47) 

and 

m£}  = (1 - M4)4;)_1) + M4|e(-)(fc)|4. (4-48) 

For all of the simulations presented in Sec. 6, we took /z4 = 0.002. 

5    Further Modifications 

5.1    MMSE Signal Separation 

5.1.1    Non-recursive Processing 

Recall that our objective is to estimate T^\z)Wi{k) for i = 1,2, • • -,M given {y(*)}. The non- 

recursive solution of Sec. 3 provides a solution in the form of (3-7) (see also (3-9) ) whereas the 

adaptive solution of Sec. 4 has it as (4-37). The deconvolution solution of [13] is not necessarily an 

MMSE solution. It has been shown in [35] and [36] (and references therein) that for the constant 

modulus algorithm, under certain conditions, the resultant solution (extracted source in the first 

stage) may be "close" to an MMSE solution. It is possible that a similar result may hold for the 

problem under consideration here. However, even if it were true, the resulting solution may not be 

the best possible because the performance of an MMSE solution depends upon the "delay" (d in 

the sequel) used and the blind algorithms provide no control over the choice of the delay parameter 

[36]. A by-product of the solutions of Sees. 3 and 4 is the estimates of the system/channel impulse 

response. These estimates can be used to design MMSE estimators of ^\z)wi(k) with a controlled 

delay d to obtain an "optimum" performance. These considerations are nevertheless heuristic as 

we are ignoring any effects of additive noise on the channel estimates. 

Let FJ° denote the t-th column of Fj. We wish to design a linear MMSE filter (equalizer) of 

length Le + 1 to estimate yW(fc - d) as y(j)(fc - d) given y(Z) for I = k, k - 1, • • •, k - Le + 1 where 

d> 0, 

yW(Jfe)  :=  ^\z)Wj(k) =  £F[JV-(fc-0 (5'1} 

z=o 

15 



and 

f\k-d) := LJ2Giy(k-i). (5-2) 
i=0 

Both Le and the delay d are "pre-determined." Using the orthogonality principle [27], the normal 

equations for MMSE estimator are given by 

E l[f\k -d)- y«(* - d)]yw(J)}  = 0 (5-3) 

for I = k - Le + 1, k - Le + 2, ■ ■ ■, k where U denotes the Hermitian operation (complex conjugate 

transpose). Using (2-2), (2-3), (5-1), (5-2) and assumption (AS2), and assuming that the system 

model is completely known, after some manipulations (5-3) simplifies to 

"f: GiRyy(p - 0 = oli £ Fi%g?_p = ^-H,,,    p = 0,1, • • ■, Le - 1 (5-4) 
i=o fc=o 

where 

H,-, := £ if M^-, = £ <-,FP = <E {yw(k+" ~ i)ymw}     <5-5> tWWt-, = £ 
fc=0 fe=o 

and 

RVV(P) == E{y(t + p)yn(t)}- (5"6) 

Note that a shift in the sequence {F^} leaves Hd_p unaffected.   The desired solution when the 

model is completely known is therefore given by 

GLc- 
„2 

where Kyy denotes a [#Ze] X [NLe] correlation matrix with Ryy(j - i) as its tj-th block element. 

In order to obtain a data-based solution, we simply replace all the unknowns by their estimates. 

Since there is an inherent scale ambiguity in estimating the composite channel impulse response 

(cf. (3-10) ), we design the equalizer only up to a scale factor by omitting a^ from (5-7). 

Remark 4. Selection of Delay d: In designing (5-2) the delay d was pre-determined. It is 

well-known [28] that the choice of d has a strong influence on the resultant mean-square error. 

One may choose to select d via exhaustive optimization as detailed below. Using the orthogonality 

principle [27], the MMSE when (5-2) is used is given by 

J(d) := -txE {[f\k -d)- yW(fc - d)]yW(k - <*)} (5"8) 
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where tr stands from trace. Using (5-l)-(5-7), we can simplify (5-8) to 

J(d) := tTE^Wik-QyWik-d)} - J\d) (5-9) 

where 

J\d)  :=  o^ti-Wl^Ti" (5-10) 

and 

H := H<i   Hd_i    • • •   Hd-L« (5-11) 

Since the first term on the right-side of (5-9) is independent of d, minimizing J(d) w.r.t. d is 

equivalent to maximizing J'(d) or cr^J'{d). In practice, we replace the unknowns in (5-10) with 

their estimates.     □ 

5.1.2    Adaptive Implementation 

We now turn to an adaptive implementation of (5-7). Note that Tl~l does not depend upon the 

stage m of the algorithm of Sec. 4.3; it depends solely upon the measured data. Its computation 

can easily be recursified by using the matrix inversion lemma: see Table 13.1 on p. 569 in [34]; we 

omit the details. Denote the data-based adaptive estimate of ft~y
x at time k as Vyy(k). 

Let HJm)(A:) denote the estimate of H, at stage m and time k of the multistage algorithm of 

Sec. 4.3. Note that f{™\k) in (4-38) (see also (3-6), (4-23) and (4-25)) denotes an estimate of Fk° 

for some i G {1,2,---,M} (up to a scale factor and time shift, cf. Theorem 1). Therefore, from 

(5-5) we have the adaptive implementation at stage m as 

B.\m\k) =    £   F<rH*ÄT(*)>   l = d,d-l,---,d-Le + l. (5-12) 

Combining the above two results, the adaptive MMSE estimate with lag d, y     (k), at stage m 

(corresponding to {y(m)(fc)> in (4"37) ) is §iven b^ 

where 

G«T\k)   G^\k)     ■■   G^Cfc) ] = [ H^>(*)   Hfcl(fc)   •■•   HtUWJWN 
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Eqn. (5-13) provides an approximately MMSE blind signal separation solution at stage m and time 

Jfe. [Note that we have ignored any effects of additive noise on the channel estimates.] 

Selection of "optimum" d as discussed in Remark 1 recursifies in an obvious way; therefore, the 

details are omitted. 

5.2    Adaptive Filter Reinitialization 

In the source-iterative (multistage) approaches of Sees. 3 and 4, any errors in cancelling the ex- 

tracted sources from the preceding stages / = 1,2, • • •, m-1 affect the performance at stage m. The 

only stage that is immune to this phenomenon is stage m = 1. The multistage approach is used to 

make sure that each stage converges to a distinct source. A possible solution to alleviate this error 

propagation from stage-to-stage is to use parallel stages where we still have M stages for M sources 

but they all operate directly on the given data record in parallel but with different initializations of 

the equalizers (filters). The basic problem with such an approach is how to ensure that each stage 

converges to a distinct source. Here we propose to initialize the parallel stages using the results of 

the serial multistage implementation of Sec. 4.3 coupled with an MMSE solution similar to that of 

Sec. 5.1. A similar though not identical approach has been proposed in [35] in a slightly different 

context where the MMSE initializer has not been used. 

For stage m = 1, there are no changes to the algorithm of Sec. 4.3. For stages m > 2, run the 

algorithm of Sec. 4.3 till the running cost (4-45) reaches a steady-state. Given the estimates of the 

subchannel impulse response at stage m, we can design an MMSE filter (in a fashion similar to Sec. 

5.1.2) to estimate Wj(k - d) given y(Z) for I = k, k - 1, • • •, k - Le + 1. Let the extracted Wj(k) at 

stage m be denoted by w^m\k). Mimicking Sec. 5.1.2, a recursive MMSE solution at stage m and 

time k is given by 

üe-l 
w™(k-d) :=   £sim)(*)y(*-0 (5-15) 

t=0 

where 

[ G^\k) G<m)(fc) G&^iW 

f{r)nw ?{iT(k) F^)n(k)   0 ^yy(^)- (5-16) 
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At stage m and time k, w(m\k - d) is an MMSE estimate (with delay d) of e(m)(fc) for the parallel 

implementation. Comparing (4-2) with (5-14) we see that C(z) = E^ö1 G^C*)*"' is the desired 

MMSE initializer. 

Selection of "optimum" d mimicking Remark 4 recursifies in an obvious way; therefore, the 

details are omitted. 

6     Simulation Example 

In this section we present two simulation examples to illustrate the proposed approaches. In both 

the examples F0 is of rank 1 < M = 2 implying that rank{^(z)} < M = 2 so that T{z) does 

not have a finite-length left inverse. In both the examples the length of the inverse filters was 11 

samples per sensor (output) for the approach of Sec. 4. The proposed approach was applied with 

M = 2 inverse filters and M - 1 = 1 signal cancellers running in parallel, each successive inverse 

filter put in operation after waiting for 200 samples w.r.t. the previous stage. To design a channel 

estimate-based MMSE signal separator (following Sec. 5), we chose the length of the MMSE filter 

as Le + 1 = 11, the same as for the inverse filters of Sec. 4. Furthermore, we chose the delay d for 

the MMSE separator design by following the procedure outlined in Remark 4 in Sec. 5. 

6.1    Example 1 

Consider a 2-input 2-output MA(6) system model resulting in N=2 and M=2 in (2-2). Its 2 X 2 

transfer function T(z) was chosen as 

0.2 + 0.8z-1 + 0.4z"2     0.5-0.3z"1 

0.3z"1 - 0.6z-2 -0.21z"1 - 0.5z-2 + 0.72z~3 + 0.36z"4 + 0.21z"6 

The input {wi(fc)} is an i.i.d. complex Gaussian-mixture (independent and identically distributed 

real and imaginary parts with the real part being ^(0,1) with probability 0.9 and Af(0,4) with 

probability 0.1) with 4th normalized cumulant as 0.7433 . The input {w2(k)} is an i.i.d. 4-QAM 

sequence with 4th normalized cumulant as -1. The additive noise is temporally and spatially white, 

zero-mean, complex Gaussian distributed (independent real and imaginary parts). The powers of 

(6-1) 
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{wj(k)} for j = 1 and 2 were scaled so as to have £{||;r(1)(.2>i(A:)||2} = E{\\^2\z)w2{k)\\2}. 

For signal separation the performance measure was taken to be the signal-to-interference-and- 

noise ratio (SINR) per source signal, defined as 

SINRj = *<iiy"W (6-2) 

where a is that value of the scalar a which minimizes £{||y(i)(*0 - ay (k)\\2}- this is need to 

remove the scale ambiguity in the design of (5-4) - it doesn't affect the SINR. As noted in Sec. 

5, that the shift ambiguities in estimating F[
J)
 do not have any influence on the equalizer design, 

hence on (6-2). 

The adaptive approach of Sec. 4.3 was applied without as well as with the reinitialization of 

Sec. 5.2. The average signal-to-noise ratio (SNR) per source was taken to be 27 dB, 20 dB, 14 

dB and 7 dB, respectively, in four sets of 100 Monte Carlo runs where the SNR for a given source 

T^\z)wj{k) is defined as 

cNT?   _   lWll^K-(*0112} (6-3) 
bWK - E{\ni(k)\2}        • 

The initial guess for the tap gains was taken to be center-tap initialization: set c;(5) = 1 for i = m 

for the m-th stage equalizer (m = 1,2) with the remaining tap gains set to zero. The algorithm 

step sizes and forgetting factors for each stage m were chosen as: m = 0.0005 in (4-29), \i2 = 0.015 

in (4-32)-(4-34) and /i3 = 0.0005 in (4-39) and (4-41) when 7^
) < 0 (see (4-35)), and y,x = 0.00025 

in (4-29), ti2 = 0.0075 in (4-32)-(4-34) and M3 = 0.0005 in (4-39) and (4-41) when 7^ > 0. For 

the running cost (4-45) computation we selected /x3 = 0.002 in (4-46)-(4-48). The parameters Lx 

and L2 in (4-37) (see also (4-22) and (4-23)) were selected as Lx = 15 and L2 = 6. To design the 

MMSE equalizers/filters (5-13) or (5-15) we took Le = 11 and d was optimized foUowing Remark 

4 of Sec. 5.1.1 over the range [-15,6]. 

Fig. 1 shows the evolution of the average running cost J™ (see (4-45)), averaged over 100 Monte 

Carlo runs (after 'assigning' each equalizer cost to its corresponding extracted source) without using 

any filter reinitialization. For the 4-QAM sources the 4th-order normalized cumulant equals -1; 

therefore, at convergence, the running cost (4-45) should be close to -1. In Fig. 1 we see these 

values to be less than that which is largely a consequence of noise in the data which affects only the 

denominator of (4-45) making it larger than it should be.  Similar effect is seen for the Gaussian 
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mixture source whose 4th-order normalized cumulant equals 0.7433 . Fig. 2 shows the evolution 

of the average running cost j£m) when reinitialization (after 12000 samples) of Sec. 5.2 is used. It 

turns out that source 1 (lUi(fc): Gaussian mixture) is extracted first, so that reinitialization only 

affects source 2 (4-QAM). 

Table I shows the average SINK, (averaged over 100 Monte Carlo runs) for the two sources (as 

per (6-2)) at the end of the run (i.e. at k = 18000) without and with filter reinitialization, for 

various SNR's. The SINR's were computed using the solution (4-37) as well as the MMSE solution 

of Sec. 5.1.2. It is seen that blind signal separation benefits from both, MMSE signal separation as 

well as filter reinitialization. 

6.2    Example 2 

Consider a 2-input 3-output MA(6) system model resulting in N=3 and M=2 in (2-2). Its 3 X 2 

transfer function F(z) was chosen as 

0.2 + 0.8z-1 + 0.4z~2    0.5-0.3z-1 

0.3z-1 - 0.6z-2 -0.21z-1 - 0.5z-2 + 0.72z-3 + 0.36z-4 + 0.21z-6     - (6-4) 

0. 0. 

Notice that the last row of (6-1) is identically zero signifying that the third 'sensor' is not receiving 

any information signal, just noise. The first two rows of (6-4) are identical to (6-1). The inputs 

{wj(k)} (j = 1,2) and additive noise are as in Example 1. The powers of {wj(k)} for j = 1 

and 2 were scaled as in Example 1 to achieve equal average signal power at the sensors. The 

measurement SNR's defined as in (6-3) and they were selected as 25.2 dB, 18.2 dB, 12.2 dB and 

5.2 dB, respectively, in four sets of 100 Monte Carlo runs. 

The adaptive approach of Sec. 4.3 was applied without as well as with the reinitialization of Sec. 

5.2. The various parameters chosen for signal separation were exactly as for Example 1. Figs. 3 and 

4 are the counterparts to Figs. 1 and 2, respectively, of Example 1, and Table II is the counterpart 

to Table I of Example 1. As in Example 1, it is seen that blind signal separation benefits from both, 

MMSE signal separation as well as filter reinitialization. Comparing with the results of Example 

1, it is seen that the results of Examples 1 and 2 are quite close to each other inspite of having a 

third "misleading" sensor in Example 2 that measures just noise. 
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7 Conclusions 

The problem of blind separation of independent linear non-Gaussian signals (sources) from their 

linear convolutive mixtures was considered. In [23] an iterative, normalized higher-order cumulant 

maximization based approach was developed using the third-order and/or fourth-order normalized 

cumulants of the "beamformed" data. The approach is source-iterative, i.e., the sources are ex- 

tracted (at each sensor) and cancelled one-by-one, providing a decomposition of the given data 

at each sensor into its independent signal components. In this paper we developed a stochastic 

gradient-based recursifkation of all of the batch optimization steps in [23]. 

Some further modifications and enhancements were also considered. For blind signal separation 

the estimated channel was used to decompose the received signal at each sensor into its independent 

signal components via an MMSE filter with a controUed delay. The proposed blind adaptive 

algorithm and its variations were illustrated via two simulation examples. 
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Table 1: Example 1: Average SINR after blind separation with record length = 18000 samples. 

Serial: Algorithm of Sec. 4.3; Parallel: Algorithm of Sec. 4.3 coupled with reinitialization of Sec. 

5.2. 

SOURCE 1 (Gaussian mixture) SOURCE 2 (4-QAM) 

SNR serial parallel serial parallel 

(4-37) MMSE (4-37) MMSE (4-37) MMSE (4-37) MMSE 

27 dB 8.656 10.785 8.656 10.785 11.620 12.815 16.618 15.689 

20 dB 8454 10.428 8.454 10.428 11.203 12.280 15.333 14.647 

14 dB 7.828 9.346 7.828 9.346 9.886 10.695 12.576 12.256 

1   7dB 5.957 6.594 5.957 6.594 6.548 6.932 7.807 7.718   1 

Table 2: Example 2: Average SINR after blind separation with record length = 18000 samples. 

Serial: Algorithm of Sec. 4.3; Parallel: Algorithm of Sec. 4.3 coupled with reinitialization of Sec. 

5.2. 

SOURCE 1 (Gaussian mixture) SOURCE 2 (4-QAM) 

SNR serial parallel serial parallel 

(4-37) MMSE (4-37) MMSE (4-37) MMSE (4-37) MMSE 

25.2 dB 8.653 10.667 8.653 10.667 11.621 12.647 16.123 15.271 

18.2 dB 8.447 10.317 8.447 10.317 11.198 12.134 15.078 14.351 

12.2 dB 7.807 9.253 7.807 9.253 9.876 10.591 12.445 12.070 

5.2 dB j  5.893 6.511   j  5.893 6.511 j   6.505 6.862   j   7.746 7.626   j 
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Abstract 

This paper is concerned with the problem of blind adaptive deconvolution of multiple com- 

munications signals and estimation of the matrix impulse response function of the underlying 

multiple-input multiple-output system given only the measurements of the vector output of the 

system. The multiple signals are received at an antenna array in the presence of both interuser as 

well as intersymbol interference. Recently a source-iterative, inverse filter criteria based approach 

was developed using the fourth-order normalized cumulants of the inverse filtered data at zero- 

lag. The approach was input-iterative, i.e., the inputs were extracted and removed one-by-one. 

The matrix impulse response was then obtained by cross-correlating the extracted inputs with the 

observed outputs. In this paper an adaptive implementation of the above approach is developed 

using a stochastic gradient approach. Computer simulation examples are presented to illustrate 

the proposed approach. 

Keywords:    Spatio-temporal processing, signal separation, space division multiple access, multi- 

input multi-output channels, co-channel interference suppression, space diversity, time diversity 

(fractional sampling) 
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1    Introduction 

Multiuser wireless communications systems have attracted considerable attention in recent years. 

Because of limited frequency spectrum allocated, approaches that lead to increased spectrum effi- 

ciency are of much interest. One promising concept is to use antenna arrays to discriminate among 

signals that have distinct spatial signatures (multipaths etc.) - SDMA (space division multiple ac- 

cess) [9]-[ll]. This allows several sources using the same carrier frequency to also use the same time 

slot in a given cell thereby increasing the system capacity. In this paper we consider the problem of 

separating multiple signals (including possibly non-digital communications interferences) received 

at an antenna array. The signals are allowed to undergo multipath propagation where the delay 

spreads are not necessarily negligible. 

The baseband-equivalent mathematical model for the problem under consideration is that of a 

multiple-input multiple-output (MIMO) system. Such modeling of digital communication systems 

has received considerable attention recently in a variety of contexts (other than SDMA) [13]-[16]. 

A major limiting factor in high data rate (> 800 kbps) digital subscriber lines (DSL) using twisted- 

pair wires is crosstalk between twisted pairs in close physical proximity [14]. In [14] the entire 

cable has been treated as a single MIMO channel with the crosstalk characterized by the matrix 

impulse response of the channel, rather than as additive noise. [14] is concerned with design 

of linear equalizers for suppression of near- and far-end crosstalk assuming complete knowledge 

of the MIMO channel matrix transfer function. In multi-track digital magnetic recording [17] 

MIMO representation is needed to represent crosstalk arising from adjacent tracks. Even in a 

single-track situation, MIMO models may arise because of vector stationary process modeling of 

scalar cyclostationary signals [13]. For instance, many run-length limited codes used in magnetic 

recording give rise to cyclostationary sequences [13]. Other applications include dually polarized 

radio channels [18] and multisensor sonar/radar systems [19]. 

Some of the recent work on MIMO channels has been concerned with design of transmitter and 

receiver filters [14] and [15], and MIMO equalizers for suppression of intersymbol interference (ISI), 

cochannel and adjacent channel interferences (CCI and ACI) [13] and [16]. In these contributions 

complete knowledge of the MIMO transfer function is assumed to be available. As noted in [16] 

(see also [17]), the equalizers can be adapted using LMS (least-mean squares) or other algorithms 

based on minimizing the mean square error between the actual response (of the equalizer) and the 



desired response which is typically supplied by a training sequence. In case of MIMO channels, 

the training sequence has to be a vector sequence which, in turn, implies that cochannel and 

adjacent channel interferences must also cooperate in furnishing training sequences. Clearly this 

is unrealistic. In other situations even the transmitter of the desired signal may not be able to 

transmit a training sequence. This leads to the desirability of adaptive design of MIMO equalizers 

and channel estimators in the absence of any training sequences: blind channel estimation and 

equalization. This paper is concerned with exactly this problem. 

Past work on blind equalization and/or channel estimation has been overwhelmingly concen- 

trated upon SISO systems (single signal single channel scenario with baud-rate sampled data). 

First bund adaptive equalizer was proposed by Sato [20]. This work was followed by generahza- 

tions due to Godard [21] and to Benveniste et al. [22]. The CMA (constant modulus algorithm) 

[23] is a special case of and an alternative interpretation of the Godard family of equalizers. Other 

contributions to SISO systems blind equalization problem include [25]-[26] (and references therein). 

The communications channels are, in general, nonminimum-phase; hence, the second-order statis- 

tics of the baud-rate-sampled stationary signals are inadequate for blind channel identification 

[22],[24],[27]; that is, in general, conventional LMS (least-mean square) scheme will not work in 

a blind setting [27].  In [l]-[2] (and others [33]) it is proposed to use fractional sampling and to 

exploit the second-order statistics of the fractionally sampled data which are cyclostationary. It has 

been shown in [28] that for a class of multipath channels, the approaches of [l]-[2] will be unable 

to correctly identify the underlying channel transfer function. In particular, this class includes all 

multipath channels consisting of time delays that are integer multiples of the symbol duration. No 

such problems arise if higher-order statistics of the data are also exploited [28]. 

Prior work on blind equalization and/or channel estimation for truly MIMO systems (more 

than one information sequence) has been far less extensive. References [3]-[7], [9]-[12], [23], [29] 

and [30]-[33] (and references therein) have considered this problem in the communications context. 

In an interesting paper [12] it has been pointed out that given a complex(-valued) MIMO channel 

and consequently a complex equalizer, but with real-valued signals (sources such as M-ary PAM), 

the CMA/Godard cost functions (and their variations) employed in [7], [10], [23], [29], [30] and [32] 

will have some undesirable global minima in that the real and imaginary parts of each equalizer 

output after convergence, may correspond to different user signals.   This would then necessitate 



further processing to check for and correct such misconvergence. In a mixed source scenario where 

not all users have the same alphabet (e.g. 2-PAM and 4-QAM), it is not clear how one would detect 

such a misconvergence. We note that such a misconvergence can not occur for the cost function 

considered in this paper (see [5] for a discussion of the convergence points of the cost used). The 

approaches of [7], [10], [23], [30] and [32] are restricted to symmetric sources with negative fourth 

cumulants. In this paper we allow the sources to be asymmetric and they can have negative or 

positive fourth cumulants. 

Finite alphabet property (all sources have the same alphabet) has been used in [9] where de- 

lay spread has been assumed to be negligible. We assume neither in this paper: different users 

are allowed to have different alphabets and moreover, some "users" may actually represent non- 

Gaussian non-communications interferences. Moreover, we consider multipath propagation with 

non-negligible delay spreads. In [3] a subspace approach approach has been used whereas in [31] a 

subspace approach coupled with the finite alphabet property (with known and identical alphabets) 

has been proposed. The subspace approaches of [3] and [31] require the MIMO transfer function 

T(z) (see (2-2)) to have full rank for every z including z = oo but excluding z = 0 whereas in this 

paper we only require T{z) to have full rank for \z\ = 1; see Theorem 1 in Sec. 3. 

In [4],[5] an iterative, inverse filter criteria based approach has been developed for deconvolution 

of multichannel non-Gaussian processes using the fourth-order normalized cumulants of the inverse 

filtered data at zero-lag. The approach is input-iterative, i.e., the inputs are extracted and removed 

one-by-one. The matrix impulse response is then obtained by cross-correlating the extracted inputs 

with the observed outputs. In this paper we develop a stochastic gradient-based "recursification" of 

all of the batch optimization steps in [4],[5]. An interesting input-iterative adaptive approach using 

prewhitened observations and the fourth-order cumulant of the inverse-filtered data at zero-lag has 

been considered in [34] and [35]. The inverse filter is constrained to have a lossless filter structure 

which is realized using a lossless lattice filter. Such a restriction can lead to ill-conditioning of the 

algorithm of [34] as one iteratively extracts input sequences. A fix to this is proposed in [35] but it 

works only for the two-input case. Refs. [34] and [35] are restricted to 'square' systems: number of 

inputs (M) equal to the number of outputs (N), whereas in this paper we allow N > M, a common 

occurrence in array processing.   Moreover, in this paper we perform no prewhitening, rather we 

operate directly on the given measurements. A consequence of this is that the ill-conditioning of 



[34],[35] referred to above does not occur in our approach.   Refs. [34] and [35] are restricted to 

real-valued data whereas we also consider complex-valued observations. 

The paper is organized as follows. In Sec. 2 the precise model assumptions are presented. The 

inverse-filter criteria-based approach of [5], the underlying identifiability results and the iterative 

source separation solution of [5] are briefly discussed in Sec. 3. In Sec. 4 we develop a stochastic 

gradient-based "recursification" of all of the batch optimization steps discussed in Sec. 3. Computer 

simulation examples are presented in Sec. 5. 

2    Problem Statement and Assumptions 

Consider a discrete-time MIMO system, possibly complex-valued, with N outputs and M inputs. 

The z-th component of the output at time k is given by 

yi(k) = £^ii(«)Tfli(fc) + ni(k),  i = l,2,---,N, (2-1) 

=>    y(jfe) = F(z)w(k) + n(fc), (2-2) 

where y(jfe) = [yi(Jfe): y2(k): ■ • • :.yN(k)]T, similarly for w(A) and n(fc), z'1 denote both the backward- 

shift operator (i.e., z~lw{k) - w(k-l), etc.) as well as the complex variable z in the £-transform, 

Wj(k) is the j'-th input at sampling time k, yi(k) is the i-th output, n;(/c) is the additive Gaussian 

measurement noise independent of {w(fe)}, and 

oo 

l——oo 

is the scalar transfer function with Wj(k) as the input and jfc(k) as the output. The MIMO transfer 

function is T{z) with tj-th element T{j{z). The model (2-l)-(2-2) is the space-time baseband- 

equivalent channel model used by several authors (e.g. [3]-[7], [10]-[12] and references therein). The 

above model could be the result of baud-rate sampling of continuous-time signals at JV sensors, or 

it could be the result of oversampling (fractional sampling) at fewer than JV sensors [l]-[3]. 

The following assumptions are made concerning the system model: 

(AS1) The vector sequence {w(Jb)} is zero-mean, temporally i.i.d. (independent and identically 

distributed) and spatially independent, i.e., various components of w(/e) are independent 

of each other but not necessarily identically distributed. Assume that the fourth-order 



cumulant (see (3-1) later) of all the components of w(fc) are nonzero but not necessarily 

negative. 

(AS2) If it is an infinite impulse response (TTR) model, then (2-2) is assumed to be the result 

of a finite-dimensional multichannel ARM A model such that the model matrix impulse 

response function is exponentially stable, i.e., || [fij(l)] \\ < aß^ for some 0 < a < oo 

and 0 < ß < 1 where [fij(l)] denotes a matrix with its ij-t\\ element as fij(l). 

(AS3) N > M, i.e. at least as many outputs as inputs. 

(AS4) Rank{:F(.z)} = M for any \z\ = 1. 

Notice that we allow the fourth-order cumulants of some components of w(A) to be positive. This 

implies that not all of the signals impinging upon the array are necessarily digital communications 

signals. Moreover, we do not require E{w)(k)} = 0 if the component Wj(k) has negative fourth 

cumulant; this is in contrast to the CMA/Godard algorithm-based approaches where we also must 

have E{w\k)} = 0 in addition to negative fourth cumulant of Wj(k). The objective is to recover 

w(k) Vj. For non-communications signals (interferences), one may be interested in analyzing the 

sources (direction, for instance) of such interference. One may not know in advance the number of 

such interfering sources, consequently, the existing methods (such as [9] and [31]) that exploit the 

finite alphabet property of the digital communications signals to simultaneously extract all of the 

sources will not work for the stated problem. 

As noted earlier in Sec. 1, it has been pointed out in [12] that for complex MIMO channel- 

equalizer cascades, but with real-valued sources, the CMA/Godard costs will have some undesirable 

global minima. "The real and imaginary parts of each equalizer output after convergence, may 

correspond to different user signals" [12]. It has been shown in [12] that the reason for this is that 

such real-valued signals are asymmetric (i.e. E{w)(k)} f 0). Such a misconvergence can not occur 

for the cost function (3-3) considered in this paper [5]. 

3    An Iterative Solution Based on Inverse-Filter Criteria 

In [4],[5] an iterative, inverse filter criteria based approach has been developed for deconvolution of 

multichannel non-Gaussian processes using the fourth-order normalized cumulants of the inverse 

filtered data at zero-lag. The approach is input-iterative, i.e., the inputs are extracted and removed 



one-by-one. The matrix impulse response is then obtained by cross-correlating the extracted inputs 

with the observed outputs. In this paper we develop a stochastic gradient-based "recursification" 

of all of the batch optimization steps in [4],[5]. In this section we briefly discuss the batch (non- 

recursive) approach of [4],[5]; its adaptive version is developed in Sec. 4. 

Let CUM4(w) denote the fourth-order cumulant of a complex-valued scalar zero-mean random 

variable w, defined as 

CUM4(w) := cum4K™*,™,™*} = E{\™\4} - 2[E{\w\2}}2 - I^K}|2 t3"1) 

where * denotes complex conjugation. We will use the notation j4wi = CUM4(wi(A:)) and awi = 

E{\wi(k)\2}. Consider an 1 x N row-vector polynomial equalizer (filter) CT(z), with its j-th entry 

denoted by C,-(z), operating on the data vector y(fc). Let the equalizer output be denoted by e(k): 

e(k) = f;ci(*)w(*). (3"2> 
i=i 

Following [4] consider maximization of the cost 

_   |CUM4(e(fe))| (3-3) 
-   [E{\e(k)\*W 

for designing a linear equalizer to recover one of the inputs.   It is shown [4] that when (3-3) is 

maximized w.r.t. C(z), then (3-2) reduces to 

e(k)  = dwjo(k-k0), (3-4) 

where d is some complex constant, k0 is some integer, jQ indexes some input out of the given M 

inputs, i.e., the equalizer output is a possibly scaled and shifted version of one of the system inputs. 

It has been established in [5] that under (AS1)-(AS4) and no noise, such a solution exists and if 

doubly-infinite equalizers are used, then aU locally stable stationary points of the given cost w.r.t. 

the equalizer coefficients are also characterized by solutions such as (3-4). 

An source-iterative solution is given by: 

Step 1. Maximize (3-3) w.r.t. the equalizer C(z) to obtain (3-4). Let 

74io  =  CUM4(e(fc)) = CVM4(dwjo(k)). (3-5) 

Step 2. Cross-correlate {e(k)} (of (3-4)) with the given data (2-2) and define a possibly scaled 

and shifted estimate of fij0(r) as 

E{yi(k)e*(k-T)} (3_6) 

UhW - E{\e(k)\2} 



where Fij(z) = EJ=-OO fij(l)z~l-  Consider now the reconstructed contribution of e(k) 

to the data yi(k) (t = 1,2, • --,N), denoted by yi,j0(k): 

Wjb(*):=EAjb(Oe(*-0- (3'7) 

i 

Step 3. Remove the above contribution from the data to define the outputs of a MIMO system 

with N outputs and M - 1 inputs. These are given by 

y'i(k) := yi(k)-yhj0(k)- (3"8) 

Step 4. If M > 1, set M <- M - 1, y»(Ä) «- y-(Ä)> and 6° back to SteP x> else quit> 

In practice, all the expectations in (3-6) are replaced with their sample averages over appropriate 

data records. 

It has been shown in [4],[5] that 

fcA(*) = EA*(iK>(*-0, (3"9) 

I 

i.e., we have decomposed the observations at the various sensors into its independent components: 

yiijo(k) in (3-9) represents the contribution of {wjo(k)} to the i-th sensor achieving blind signal 

separation. This aspect may be useful in isolation and analysis of non-communication interfering 

signals. 

Remark 1. It has been shown in [5] that under the conditions (AS1)-(AS4) and no noise, the 

proposed iterative approach is capable of blind identification of a MIMO transfer function T{z) 

up to a time-shift, a scaling and a permutation matrix provided that we allow doubly-infinite 

equalizers. That is, given T{z), we end up with a A(z) where the two are related via 

A(z) = f(z)DAP (3_1°) 

where D is an M X M "time-shift" diagonal matrix with diagonal entries such as z'^ (recall (3-4)), 

A is an M x M diagonal scaling matrix, and P is an M x M permutation matrix. The Mowing 

result has been proved in [5] 

Theorem 1[5]: Given the model (2-2) such that n(fc) = 0 and given the true 4th-order and 2nd- 

order cumulant functions of the model output {y(k)} such that conditions (AS1)-(AS4) hold true. 

Suppose that doubly infinite equalizers are used in steps 1-4 of the iterative procedure of Sec. 3. 

Then this procedure yields a transfer function A(z) satisfying (3-10).   •     □ 

Remark 2.   The results of [4],[5] are based upon the use of doubly-infinite inverse filters.   If we 



assume that T(z) has finite impulse response (FIR) and rank{^(z)} = M for any z (including 

z = oo but excluding 2 = 0), then finite length inverse filters suffice. For an analysis and further 

elaborations, see [6] and [7] where a Godard cost function is considered but the results of [6] and 

[7] can be easily modified to apply to the cost (3-3) and the basic conclusions remain unchanged. 

The following result follows from [5] and [7]. 

Theorem 2: Given the FIR model (2-2) such that n(fc) = 0 and conditions (ASl) and (AS4) 

hold true. Suppose that steps 1-4 of the iterative procedure of Sec. 3 are used and the record length 

tends to infinity. Then this procedure yields a transfer function A(z) satisfying (3-10) if one of the 

following holds true: 

(A) Rank{JH»} = M for any z (including z = oo but excluding z = 0), and doubly-infinite 

equalizers are used. 

(B) Rank{^(2)} = M for any z (including z = oo but excluding z = 0), F(z) is column-reduced 

and FIR equalizers with length Le > (2M - l)Lc - 1 are used where Lc = channel length. 

•     D 

4    Adaptive Algorithm 

In this section we develop a stochastic gradient-based "recursification" of all of the batch opti- 

mization steps discussed in Sec. 3. Theorems 1 and 2 of Sec. 3 motivate and justify the algorithm 

developed in this section. 

4.1    First Stage Maximization of Normalized Fourth Cumulant 

Let the length of the equalizer C(z) be Le and let 

Ci(z) = "fc^z-1. (4-1) 
1=0 

This allows us to rewrite (3-2) as 

N   Le-l 

W   "   ^  Z^  ".vv,,"       -, >TY(k) (4"2) 

i=l   1=0 

where 

<k) = £X>(0w(*-0 = C'Y(fc) 
i=l   1=0 

iT 

Y(*) =[*?"(*)   Y?(k)   ■■■   Y$(k)}   , (4"3) 
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Yi(k)=    yi(k)   yi(k-l)   ■■■   yi(k-Le + l) 

C(Jfe)=    C\T   Cl   ■■■   a N 

and 

Ci=       C;(0)     C;(l)     •••     Ci(Jüe-l) 

Define 

m4 = E{\e(k)\A},   m2  = E{\e(k)\2},    m2  = £{e2(fc)}- 

Then showing explicit dependence upon C, (3-3) may be rewritten as 

J(C) = sgn(74) 
m4 - |m2|

2 

m~ 

where 

2       I™   |2 74  =  m4 - 2 m2 - |m2 

(4-4) 

(4-5) 

(4-6) 

(4-7) 

(4-8) 

(4-9) 

Let VC denote a gradient operator (w.r.t. a vector C). We will follow [7] in formally defining 

the complex derivatives. Then we have 

(4-10) Voe(*0 = 0   and    Vo e*(fc) = Y*(fc). 

Using the above results in (4-7) we have 

Vc-^4  =  2E{e2{k)e*(k)Y*(k)})    Vc™2  =  E{e(k)Y*(k)} 

and 

(4-11) 

(4-12) Vc™2 = 0,    Vc™2 = 2E{e*{k)Y*(k)}. 

Using (4-8)-(4-12) and after some simplification, we have 

VC^(C) = 

?i^M lm2E{\e(k)\2e(k)Y*(k)} - m2m2E{e\k)Y\k)} - [m4 - \m2\2]E{e(k)Y*(k)}} .(4-13) 
ro.2 •- TTlr, 
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We will use a stochastic gradient method for recursification of maximization of J(C) using an 

'instantaneous' gradient as an estimate of (4-13). Given the estimate C(fc - 1) of the tap-gains at 

time k - 1. the stochastic gradient method computes the update C(fc) at time k as 

C(A) =  C(A - 1) + /*i VC Jk(C(k - 1)) (4-14) 

c(*) = -5^- (4-15) 
^ ||C(*)|| 

where ^ is the update step-size and VC<^(cO - 1)) is an instantaneous gradient of the cost J 

(w.r.t. C*) at time A; evaluated at C(* - 1). Since the cost J is invariant any scaling of C, we 

normalize C in (4-15) to have a unit norm. From (4-13) we have the approximation 

VC.Jb(C(*)) = sgn(74fc)4- { kfc (fi2(*) " M e*(k) - (m4fc - |m2fc|
2) e(k)} Y*(k)} (4-16) 

where 

m2fc = (1 -/i2)m2(fc_i) + M2|e(A;)|2, (4"17) 

m2fc  =  (1-M2)rn2(fc_i) + p2e
2(k), (4"18) 

m4fc  =  (1 - /x2)m4(fc_1) + /x2|e(A0|4, (4"19) 

74fc =  m4fc-2m2
fc-|m2fc|

2 (4"2°) 

and 

e(k) = CT(k)Y(k). (4-21) 

In (4-17)-(4-19) the various quantities represent estimates based upon sample averaging, the (ex- 

ponential window) memory being controlled by the forgetting factor n2 (0 < \M < 1)- The initial- 

izations for (4-17)-(4-19) are: m20 = m40 = rn20 = 0. 

4.2    First Stage Signal Cancellation 

Now we discuss implementation of (3-6) via sample averaging using an exponential window con- 

trolled by a forgetting factor fi3. Define (Li,L2 > 0) 

E(jfe)= [ e(fc + Ii)    e(fc + Ii-l)    •••   e(k-L2)} (4"22) 
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and 

Fi=     /i(-Ii)    /i(-£i + l)    •••   fi(L 2) 
(4-23) 

By Sec. 3, when (4-8) is maximized, e(k) satisfies (3-4) so that for suitable choice of Lx and L2, 

there exists a j0 G {1,2, ■ • •, M} such that 

EAäCKC*-') = FfE(fc),     x=l12I-..,JV. (4-24) 

In order to implement (3-7) and (3-8), we need recursive estimates of F;. The estimate F,(A) of F, 

at time k is provided by 

Fi(fc) = Ki(k)/mee(k) (4-25) 

where 

mee(k)  =  (1 - /x3)mee(Ä! - 1) + M3Kfc)|2, (4-26) 

Ri(Jfe) = (1 - /x3)Ri(fc - 1) + ^^(äJE'Cä). (4-27) 

4.3    Multistage Algorithm 

In Sees. 4.1 and 4.2 we discussed the first stage of the algorithm where we have N sensors and M 

sources. Now we put it all together following the source-iterative solution of Sec. 3 and discuss 

extraction of M sources including the cancellation of the extracted sources. We will use the super- 

script (m) to denote the various quantities pertaining to stage m. These have been used previously 

in Sees. 4.1 and 4.2 without this superscript; for instance, C^m\k) now denotes the estimate of the 

tap-gain vector at time k at stage m, etc. 

Initialization: 

YW(A;) =     as in (4-3) (4-28) 

DO FORm = 1,2,---,M: 

cH(Jt) =  C<m>(Jfe - 1) + MI Vo 4m)(c(m)(* - !)) (4"29) 

cM(fc) =    g(m)W (4-30) 
1 j     ||c(»)(*)|| 
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where 

m2fc 

-(»iLi<4B)ij)«|w)(*)]Y(m),(*)}, 

«4») = (i - ^^.x, + ^(m)a(*). 

7^  =  m&)-2n4:)a-|Ä&,l2 

(4-31) 

(4-32) 

(4-33) 

(4-34) 

(4-35) 

and 

e("0(]fe)  =  C^T(k)Y^m\k). (4-36) 

Set 

y\m\k) = F[m)T(k)E^m\k) (4-37) 

where ^m)(A;) represents (cf. (3-7)) the contribution of the extracted source at the ro-th 

stage to the measurement at time k at the i-th sensor, and where 

FJm)(fc) = K^\k)/mt\k), 

mW(i) = (1 - ßz)m£\k - 1) + ^|c(m)(*)l2. 

E(m)(fc) = [ e(m\k + Lx)   e(m\k + Li-l)   •••   eW(fc-ij) 

(4-38) 

(4-39) 

(4-40) 

and 

B<r\k) = (1 - /x3)Rf }(fc - 1) + ^»lm)(*)E(™)*(fc). (4-41) 
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Define 

Set 

?}m\k) =  [ sH(Jfe)     SJm)(fc-l)     •••     ^m)(*-£e+l) 

Y^+1)(Jb) = [ Y}m+1)T(k)   y2
(m+1)T(fc)   •••   Y^m+1)T(k) 

iT 

where 

im)fu\ _ v(m)f y.<m+1>(Jfe) = l?m'(Ä) - YSm)(k) 

(4-42) 

(4-43) 

(4-44) 

ENDDO 

The sequence {e^m\k)} in (4-36) represents the equalized (up to a scale factor and time delay) 

source at stage m. 

Remark 3. If M were unknown the proposed approach will still work in the sense that if M were 

underestimated, some sources will be missed but the extracted sources will correspond to one of 

the users (or interferers). If M were overestimated, all the users/interferers will be recovered in 

addition to some "meaningless junk" outputs in stages M0 + 1 and later where M0 denotes true 

number of users. Indeed one can test the 'residuals' (4-44) (see also (3-8)) to check if any significant 

non-Gaussian components remain in the data before implementing another equalizer in parallel. 

We do not pursue this aspect in this paper.     D 

Running Cost. To monitor the convergence of the equalizers in various stages of the algorithm, 

it is useful to calculate a running cost (4-8) without the sign. Let j[m) denote the running cost for 

the m-th stage at time k, given by 

r(m)  _ m (
m)     l^(m)|2 

■4k 
m ■2k 

m 
(m)2 
2k 

-2 

where 

m&>  = (l-M«)T»4(l?-i) + M4k(m,(fc)|a, 

and 

For all of the simulations presented in Sec. 5, we took /x4 = 0.002. 

(4-45) 

(4-46) 

(4-47) 

(4-48) 
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5     Simulation Examples 

In this section we provide three computer simulation examples to illustrate the proposed blind 

adaptive algorithm for multiuser signal separation and interference suppression. 

5.1     Example 1: 3 BPSK Sources and 7 Sensors 

We consider a wireless communications scenario with three (M = 3) BPSK user signals arriving 

at a uniform linear array of N - 7 sensors via a frequency selective multipath channel. The array 

elements are spaced half a wavelength apart. The array measurements are assumed to be sampled 

at baud rate (for simulation convenience only) with sampling interval T seconds and the three 

sources have the same baud rate. The relative time delay r (relative to the first arrival), the angle 

of arrival 6 (in degrees w.r.t. the array broadside) and the relative attenuation factor (amplitude) 

a for various sources were selected as: 

Wl :    {r,6,a) = (OT, 10°,0.5), (IT,50°,0.75) 

w2 :    (r,6,a) = (OT,-20°,0.5), (IT,45°,0.45), (2T, 15°,-0.65) 

w3 :    (T,6,a) = (0T,-35°,0.7), (IT,-5°, 0.4). 

Thus the signals wx and w3 propagate through two paths whereas w2 passes through three paths. 

The signals arriving at the array were normalized such that the signal powers for users 1 and 2 

are equal, and 3dB higher than the signal power for user 3. Additive white (both temporally and 

spatially) Gaussian noise was added to the array measurements to achieve a signal-to-noise-ratio 

(SNR) of 11.55dB (ratio = 100/7) for the strongest user(s). The SNR for a given user Wj(k) is 

defined as 

QWP _ ^Ef=i^{l^-UH(fe)l2} 
bjm - £{k(*)l2} 

The proposed approach was applied with M = 3 equalizers and M -1 = 2 signal cancellers run- 

ning in parallel, each successive equalizer put in operation after waiting for 200 samples (symbols) 

w.r.t. the previous stage. The equalizer length was chosen to be 5 taps per sensor (Le — 5 in (4-2)). 

The initial guess for the tap gains was taken to be center-tap initialization: set Ci(2) = 1 for i = m 

for the m-th stage equalizer (m = 1,2,3) with the remaining tap gains set to zero. The algorithm 
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step sizes and forgetting factors for each stage m were chosen as: /ii = 0.003 in (4-29), /i2 = 0.015 

in (4-32)-(4-34) and /x3 = 0.0005 in (4-39) and (4-41). For the running cost (4-45) computation 

we selected /x4 = 0.002 in (4-46)-(4-48). The parameters Lr and L2 in (4-40) (see also (4-22) and 

(4-23)) were selected as L\ = 15 and L2 = 6. 

Fig. 1 shows the evolution of the average running cost j[m) (see (4-45)), averaged over 100 

Monte Carlo runs after 'assigning' each equalizer cost to its corresponding extracted source. For 

BPSK sources the 4th-order normalized cumulant equals -2; therefore, at convergence, the running 

cost (4-45) should be close to -2. In Fig. 1 we see these values to be around -1.89 which is largely a 

consequence of noise in the data which affects only the denominator of (4-45) making it larger than 

it should be. Table 1 shows the signal-to-interference-and-noise ratio (SINR) and the probability 

of error Pe at the output of each equalizer at selected time instants, averaged over 100 Monte Carlo 

runs and 3000 symbols. [The equalizer tap gains at the chosen time instants were 'frozen' and used 

to equalize data of length 3000 symbols in order to calculate SINR and Pe. The equalized data 

were rotated, scaled and shifted before calculating the two performance measures.] It is seen from 

Fig. 1 and Table 1 that the proposed approach works well. As noted earlier, [12] has shown that 

CMA/Godard cost functions will have problems with the user signals considered in this example. 

5.2 Example 2: 3 4-QAM Sources and 7 Sensors 

This example is the same as Example 1 except that the three user signals are 4-QAM. The other 

parameters for signal generation and equalization are just as for Example 1 (e.g. user signals 1 

and 2 are 3 dB stronger than the user signal 3, etc.). The counterparts to Fig. 1 and Table 1 

are now shown in Fig. 2 and Table 2, respectively. For 4-QAM sources the 4th-order normalized 

cumulant equals -1; therefore, at convergence, the running cost (4-43) should be close to -1. The 

convergence is now slower, yet the approach still works well. The weaker user signal now takes 

longer to be extracted. 

5.3 Example 3: 2 Mixed Sources and 5 Sensors 

In this example we consider a 4-QAM user signal wx (4th normalized cumulant as -1) and a 

non-communications signal w2 consisting of an i.i.d. complex Gaussian-mixture (independent and 

identically distributed real and imaginary parts with the real part being Af(0,l) with probability 
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0.9 and A/\0,4) with probability 0.1) with 4th normalized cumulant as 0.7433 .   The multipath 

channels for the two signals were selected as: 

Wl  :    (T,0,a) =  (0T, 10°,0.5), (IT,50°,0.75) 

W2 :    (r,ö,a) = (OT,-20°, 0.5), (IT, 45°, 0.45), (2T, 15°,-0.65). 

The two signals have equal power. Additive white Gaussian noise was added to the array measure- 

ments to achieve an SNR of 13dB (ratio = 20) for each user signal. 

The proposed approach was applied with M = 2 equalizers and M - 1 = 1 signal cancellers 

running in parallel, the second equalizer put in operation after waiting for 200 samples. The 

equalizer length was chosen to be 5 taps per sensor (Le = 5 in (4-2)). The initial guess for the tap 

gains was taken to be center-tap initialization: set c;(2) = 1 for i = m for the m-th stage equalizer 

(m = 1,2) with the remaining tap gains set to zero. The algorithm step sizes and forgetting factors 

were chosen as: Mi = 0.0005 in (4-29), /i2 = 0.015 in (4-32)-(4-34) and /*3 = 0.0005 in (4-39) 

and (4-41) when 7J™} < 0 (see (4-35)), and /xx = 0.0001 in (4-29), /x2 = 0.003 in (4-32)-(4-34) 

and fi3 = 0.0005 in (4-39) and (4-41) when 7^ > 0. The parameters Lx and L2 in (4-40) were 

selected as Lx = 15 and L2 = 6. For the running cost (4-45) computation we selected ^4 = 0.002 

in (4-46)-(4-48). 

The counterparts to Fig. 1 and Table 1 are now shown in Fig. 3 and Table 3, respectively, where 

in Table 3 the Pe for signal 2 is omitted (for obvious reasons). The convergence for the source with 

positive 4th cumulant is quite slow. 

6    Conclusions 

The problem of separating multiple signals (including possibly non-digital communications inter- 

ferences) received at an antenna array in a wireless communications system was considered in the 

absence of any training sequences. The signals are allowed to undergo multipath propagation where 

the delay spreads are not necessarily negligible. In [4],[5] an iterative, inverse filter criteria based 

approach has been developed for deconvolution of multichannel non-Gaussian processes using the 

fourth-order normalized cumulants of the inverse filtered data at zero-lag. The approach is input- 

iterative, i.e., the inputs are extracted and removed one-by-one.  The matrix impulse response is 

17 



then obtained by cross-correlating the extracted inputs with the observed outputs. In this paper we 

developed a stochastic gradient-based recursification of all of the batch optimization steps in [4],[5]. 

The proposed blind adaptive algorithm was illustrated via three simulation examples involving 

frequency selective multipath channels. 

It has been pointed out in [12] that for complex MIMO channel-equalizer cascades, but with 

real-valued sources, the CMA/Godard costs will have some undesirable global minima in that the 

real and imaginary parts of each equalizer output after convergence, may correspond to different 

user signals. It has been shown in [12] that the reason for this is that such real-valued signals 

are asymmetric (i.e. E{w2
j(k)} ^ 0). Such a misconvergence can not occur for the cost function 

considered in this paper. 
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Table 1: Example 1: Performance measures at selected times: averages over 100 Monte Carlo runs. 

# of samples 

4000 

6000 

8000 

12000 

User 1 

SlNR(dB) 

14.89 

15.03 

15.13 

15.14 

P, 

< 3 x 10~4 

< 3 x 10~4 

< 3 x 10~4 

< 3 x 10~4 

User 2 

SlNR(dB) 

14.25 

14.81 

14.94 

14.97 

P, 

0.0099 

< 3 X 10"4 

< 3 x 10-4 

< 3 x 10~4 

User 3 

SINR(dB) 

14.84 

15.13 

15.19 

15.23 

< 3 x 10~4 

< 3 x 10"4 

< 3 x 10~4 

< 3 x 10~4 

Table 2: Example 2: Performance measures at selected times: averages over 100 Monte Carlo runs. 

# of samples 

4000 

6000 

8000 

12000 

User 1 

SINR(dB) 

12.36 

14.36 

15.06 

15.17 

0.0942 

0.0292 

< 3 x 10-4 

< 3 x 10~4 

User 2 

SINR(dB) 

12.78 

14.54 

14.80 

14.98 

0.0483 

0.0073 

< 3 x 10-4 

< 3 x 10-4 

User 3 

SINR(dB) 

13.75 

14.70 

14.93 

14.98 

0.0011 

< 3 x 10~4 

< 3 x 10~4 

< 3 X 10~4 

Table 3: Example 3: Performance measures at selected times: averages over 100 Monte Carlo runs. 

# of samples 

8000 

12000 

16000 

User 1 

SINR(dB) 

14.12 

14.79 

15.06 

0.0072 

< 3 x 10" 

< 3 x 10" 

User2 

SINR(dB) 

5.52 

9.28 

11.49 
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Figure 1: Average running cost for Example 1, averaged over 100 Monte Carlo runs. 
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7 sensors, 3 4-QAM sources 
(avergaed over 100 runs) 

4000 8000 
no. of samples 

12000 

Figure 2: Average running cost for Example 2, averaged over 100 Monte Carlo runs. 
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5 sensors, 2 'mixed' sources 
(avergaed over 100 runs) 
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Figure 3: Average running cost for Example 3, averaged over 100 Monte Carlo runs. 
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ABSTRACT 

This paper is concerned with the problem of adaptive de- 
convolution and estimation of the matrix impulse response 
function of a multiple-input multiple-output system given 
only the measurements of the vector output of the sys- 
tem. The system is assumed to be driven by a spatially 
and temporally i.i.d. non-Gaussian vector sequence (which 
is not observed). Recently a iterative, inverse filter criteria 
based approach was developed using the third-order and/or 
fourth-order normalized cumulants of the inverse filtered 
data at zero-lag. The approach was input-iterative, i.e., the 
inputs were extracted and removed one-by-one. The matrix 
impulse response was then obtained by cross-correlating the 
extracted inputs with the observed outputs. In this paper 
an adaptive implementation of the above approach is devel- 
oped using a stochastic gradient approach. Simulation ex- 
amples are presented to illustrate the proposed approach. 

1.    INTRODUCTION 

Consider a discrete-time MIMO system, possibly complex- 
valued, with N outputs and M inputs. The t-th component 
of the output at time k is given by 

M 

yi(k) = jrVy(*)tiy(fc) + *(*),   * = 1.2, - - -, JV, 
i=i 

y(fc) = T(z)w(k) + n(fc), 
(1-1 
(1-2 

where y(fc) = [yi(k) : y2(k) :■■■ :yN(k)]T, similarly for w(fc) 
and n(ifc), z_1 denote both the backward-shift operator (i.e., 
z~1w(k) = w(k - 1), etc.) as well as the complex vari- 
able z in the Z—transform, vij(k) is the j'-th input at sam- 
pling time fc, yi(k) is the t-th output, n;(fc) is the addi- 
tive Gaussian measurement noise independent of {w(fc)}, 

and Tij(z) = YM=-<X> fe(l)z~l is the scalar transfer func- 
tion with vij(k) as the input and yi(k) as the output. 
The MIMO transfer function is T[z) with tj-th element 
Tidz). The model (l-l)-(l-2) is the space-time baseband- 
equivalent channel model used by several authors (e.g. [3]- 
[7], [9]-[l0] and references therein). The above model could 
be the result of baud-rate sampling of continuous-time sig- 
nals at N sensors, or it could be the result of oversampling 
(fractional sampling) at fewer than N sensors [l]-[3]. 

In [4],[5] an iterative, inverse filter criteria based approach 
has been developed for deconvolution of multichannel non- 
Gaussian processes using the fourth-order normalized cu- 
mulants of the inverse filtered data at zero-lag. The ap- 
proach is input-iterative, i.e., the inputs are extracted and 
removed one-by-one. Trie matrix impulse response is then 
obtained by cross-correlating the extracted inputs with the 
observed outputs. In this paper we develop a stochastic 
gradient-based "recursification" of all of the batch optimiza- 
tion steps in [4], [5]. An interesting input-iterative adaptive 

This work was supported by the National Science Foundation 
under Grant MIP-9312559 and by the Office of Naval Research 
under Grant N00014-97-1-0822. 

approach using prewhitened observations and the fourth- 
order cumulant of the inverse-filtered data at zero-lag has 
been considered in [11] and [11]. The inverse filter is con- 
strained to have a lossless filter structure which is realized 
using a lossless lattice filter. Such a restriction can lead to 
ill-conditioning of the algorithm of [11] as one iteratively 
extracts input sequences. A fix to this is proposed in 12 
but it works only for the two-input case. Refs. [11] and [12 
are restricted to M = N whereas in this paper we allow 
N > M, a common occurrence in array processing. More- 
over, in this paper we perform no prewhitening, rather we 
operate directly on the given measurements. 

2.    MODEL ASSUMPTIONS 
The following assumptions are made concerning the system 
model (1-1) and (1-2): 
(AS1) The vector sequence {w(fc)} is zero-mean, tem- 

porally i.i.d. (independent and identically dis- 
tributed) and spatially independent, i.e., various 
components of w(fc) are independent of each other 
but not necessarily identically distributed. Assume 
that the fourth-order cumulant (see (3-1) later) of 
all the components of w(fc) are nonzero but not 
necessarily negative. 

(AS2) If it is an infinite impulse response (IIR) model, 
then (1-2) is assumed to be the result of a finite- 
dimensional multichannel ARMA model such that 
the model matrix impulse response function is ex- 
ponentially stable, i.e., || [fij(l)] || < aßW for some 
0 < a < co and 0 < ß < 1 where [fii(l)] denotes a 
matrix with its ij-th element as fij(l). 

(AS3) N > M, i.e. at least as many outputs as inputs. 
(AS4) Rank{JF(z)} = M for any \z\ = 1. 

Notice that we allow the fourth-order cumulants of 
some components of w(ife) to be positive. Moreover, we 
do not require E{w2(k)} = 0 if the component Wj(k) 
has negative fourth cumulant; this is in contrast to the 
CMA/Godard algorithm-based approaches where we also 
must have E{w2(k)} = 0 in addition to negative fourth 
cumulant of Wj(k). The objective is to recover tiy(fc) Vj. 
It has been pointed out in [9] that for complex MIMO 
channel-equalizer cascades, but with real-valued sources, 
the CMA/Godard costs will have some undesirable global 
minima. "The real and imaginary parts of each equalizer 
output after convergence, may correspond to different user 
signals" [9]. It has been shown in [9] that the reason for 
this is that such real-valued signals are asymmetric (i.e. 
E{w?(k)} # 0). Such a misconvergence can not occur for 
the cost function (3-3) considered in this paper [5]. 

3.    AN ITERATIVE SOLUTION 
In this section we briefly discuss the batch (non-recursive) 
approach of [4],[5l; its adaptive version is developed in Sec. 
4. Let CUM4(u>) denote the fourth-order cumulant of a 
complex-valued scalar zero-mean random variable w, de- 
fined as 

CUM*(™) := E{\w\i}-2[E{\w\7}]2-\E{w7}\2. (3-1) 



Consider an 1 x N row-vector polynomial equalizer (filter) 
CT(z), with its j-tb. entry denoted by Cj{z), operating on 
the data vector y(k). Let the equalizer output be denoted 
by e(fc): 

<*) = I>(*M*)- 
i=l 

Following [4] consider maximization of the cost 

J  : = 
|CUM4(e(fc))l 
[E{\e{k)\»}]> 

(3-2) 

(3-3) 

for designing a linear equalizer to recover one of the inputs. 
It is shown [4] that when (3-3) is maximized w.r.t. C(z), 
then (3-2) reduces to 

e(fc)  =  dwj0(k - fco), (3-4) 

where d is some complex constant, fco is some integer, jo 
indexes some input out of the given M inputs, i.e., the 
equalizer output is a possibly scaled and shifted version of 
one of the system inputs. It has been established in [5] that 
under (AS1)-(AS4) and no noise, such a solution exists 
and if doubly-infinite equalizers are used, then all locally 
stable stationary points of the given cost w.r.t. the equalizer 
coefficients are also characterized by solutions such as (3-4). 

A source-iterative solution is given by: 

Step 1. Maximize (3-3) w.r.t. the equalizer C(z) to obtain 
(3-4). 
Cross-correlate {e(fc)} (of (3-4)) with the given 
data (2-2) and define a possibly scaled and shifted 
estimate of fij0(r) as 

Step 2. 

fiio{r)  := 
Efa(fc)e*(fc-r)} 

£{K*)I2} 
(3-5) 

where Fij(z) = J2Z-oo /o(0z~'- Consider now 
the reconstructed contribution of e(fc) to the data 
yi(k) (i = 1, 2, ■ • •, N), denoted by y<,;0(fc): 

fc.io(*):=]C&.('M*-0- (3_6) 

Step 3. Remove the above contribution from the data to 
define the outputs of a MIMO system with N out- 
puts and M — 1 inputs. These are given by 

y'i(k) := iN(fc) - £.,•„(*)• (3-7) 

Step 4. If M > 1, set M <- M - 1. 
back to Step 1, else quit. 

Vi(k) <- y'i(k), and go 

In practice, all the expectations in (3-5) are replaced with 
their sample averages over appropriate data records. 

It has been shown in [4],[5] that 

»wo(fc) = £/yo(0™i.(*-0.        (8-8) 
i 

i.e., we have decomposed the observations^at the various 
sensors into its independent components: yi,j0{k) in (3-8) 
represents the contribution of {wj0(k)} to the i—th sensor 
achieving blind signal separation. 
Theorem 1[5]: Given the model (1-2) such that n(fc) = 0 
and given the true 4th-order and 2nd-order cumulant func- 
tions of the model output {y(fc)} such that conditions 
(AS1)-(AS4) hold true. Suppose that doubly infinite 
equalizers are used in steps 1-4 of the iterative procedure of 

Sec. 3. Then this procedure yields a transfer function A(z) 
satisfying 

A(z) = f(z)DAP • (3-9) 

The results of [4],[5] are based upon the use of doubly- 
infinite inverse niters. If we assume that J~(z) has finite 
impulse response (FIR) and rank{.F(z)} = M for any z 
(including z = oo but excluding z = 0), then finite length 
inverse niters suffice. For an analysis and further elabora- 
tions, see [6] and [7] where a Godard cost function is con- 
sidered but the results of [6] and [7] can be easily modified 
to apply to the cost (3-3). The following result follows from 
[5] and [7]. 
Theorem 2: Given the FIR model (1-2) such that n(fc) = 0 
and conditions (ASl) and (AS4) hold true. Suppose that 
steps 1-4 of the iterative procedure of Sec. 3 are used and 
the record length tends to infinity. Then this procedure 
yields a transfer function A(z) satisfying (3-9) if one of the 
foDowing holds true: 

(A) Rank{:F(z)} = M for any z (including z = oo but 
excluding z = 0),  and doubly-infinite equalizers are 

(B) Rank{JF(z)} M for any z (including z = oo but 
—' "        -reduc   "        "  " 

1)LC- 
excluding z = 0), T{z) is column-reduced and FIR 
equalizers with length Lc > (2M 1 are used 
where Lc = channel length.     • 

4.    ADAPTIVE ALGORITHM 

In this section we develop a stochastic gradient-based "re- 
cursification" of all of the batch optimization steps dis- 
cussed in Sec. 3. Theorems 1 and 2 of Sec. 3 motivate 
and justify the algorithm developed in this section. 

4.1.     First    Stage    Maximization    of   Normalized 
Fourth Cumulant 

Let the length of the equalizer C{z) be Lc and let 

x-.-i 
d(z) =   ^2 Ci(l)z-1. 

This allows us to rewrite (3-2) as 

(4-1) 

e(fc) = X!E«CM*-') = °TY(ä:)   (4-2) 

where 

Y(k)=[Y1
T(k)  y2

T(fc)  •••  yJ(fc)]T,    (4-3) 

Yi(k) = [yi(k)    yi(k-l)    ■■■    yi(k-L. + l)]T, 
(4-4) 

C(Jfc) = [ C?    C2
T    •••    Cl ]T, (4-5) 

and 

Ci = [ci(0)    ci(l)    ■■■    c-(ü.-l) f. (4-6) 

Define 

m4  =  £{|e(fc)|4},    m2  = E{\e{k)\2},    m2  =  E{f(k)} 
(4-7) 

Then showing explicit dependence upon C, (3-3) may be 
rewritten as 

J(C) = sgn(70 
TO4 - |m2|

2 
(4-8) 



where 
74  = rrn — 2 m2 — |m2| . (4-9) 

Let Vc denote a gradient operator (w.r.t. a vector C). 
We will follow [7] in formally denning the complex deriva- 
tives. Then we have 

VC. e(*) = 0    and     VC. e\k) = Y\k).       (4-10) 

Using the above results in (4-7) we have 

VC.m4 = 2£{e2(fc)e*(fc)Y*(fc)}, 

Vc.m2 = £{e(i)Y'(i)} (4-11) 

and 

VC.m2 = 0, VC-™* = 2£{e*(fc)Y*(fc)}. (4-12) 

Using (4-8)-(4-12) and after some simplification, we have 

VC.J(C) = ^^ {rn,Ei\e(k)\*e(k)Y'(k)} 
m2 

-m2m2£;{e*(fc)Y*(A:)} - [m4 - \m2f]E{e(k)Y*(fc)}} . 
(4-13) 

We will use a stochastic gradient method for recursifica- 
tion of maximization of .7(C) using an 'instantaneous' gra- 
dient as an estimate of (4-13). Given the estimate C(fc - 1) 
of the tap-gains at time k — 1, the stochastic gradient 
method computes the update C(fc) at time k as 

C(fc) = C(fc - 1) + MI VC J*(C(fc - !))      (4 - 14) 

C(fc) c(fc) 
l|C(*)|| 

(4-15) 

where /JI is the update step-size and S7Q.Jk(C(k — 1)) is 
an instantaneous gradient of the cost J (w.r.t. C) at time 
h evaluated at C(fc — 1). Since the cost J is invariant to 
any scaling of C, we normalize C in (4-15) to have a unit 
norm. From (4-13) we have the approximation 

VC.4(C(i)) = 

sgn(74fc)—5- { [rn2k (e2(fc) - m2fc) e*(fc) 
m2fc 

- (m4fc - |m2fc|
2) e(fc)] Y'{k)} (4 - 16) 

where 

m2fc  = (1 -/i2)m2(fc_i) + /i2|e(fe)| , 

m2fc  = (1 - /i2)m2(fc_i.) + M2e
2(fc), 

mtfe  =  (1 - M2)m4(fc_i) + M2|e(fc)| , 

74fc  =  m4fc - 2m2fc - |m2fc| 

(4-17) 

(4-18) 

(4-19) 

(4-20) 

e(fc) =  CT(fc)Y(fc). (4-21) 

In (4-17)-(4-19) the various quantities represent estimates 
based upon sample averaging, the (exponential window) 
memory being controlled by the forgetting factor p.2 (0 < 
p2 < 1). The initializations for (4-17)-(4-19) are: m20 = 
77140 = 77120 = 0. 

and 

4.2.    First Stage Signal Cancellation 
Now we discuss implementation of (3-6) via sample averag- 
ing using an exponential window controlled by a forgetting 
factor ß3- Define (Li,Z2 > 0) 

E(fc) = [ e(fc + £i)    e(fc + Ii-l)    •■■    e(fc-Z2)f 
(4-22) 

and 

F; = [ 7i(-ii)  7i(-£i + i)  •••  fi(L2) ]T. 
(4-23) 

By Sec. 3, when (4-8) is maximized, e(fc) satisfies (3-4) so 
that for suitable choice of Li and i2, there exists a jo € 
{1,2,---.M} such that 

£/«.(')»«(*-') = F?E(fc),     i = l,2,--.,J\T. 

(4 - 24) 
In order to implement (3-6) and (3-7), we need recursive 
estimates of F;. The estimate F;(fc) of Fj at time fc is 
provided by 

Fi(fe) = Ri(Jfc)/m..(fc) (4-25) 

where 

m«(Jfc)  = (1 - M3)mee(A: - 1) + M3|e(fc)|2,       (4 - 26) 

Ri(fc) = (1 - /i3)Ri(fc - 1) + w»i(fe)E*(fc).     (4 - 27) 

4.3.    Multistage Algorithm 
In Sees. 4.1 and 4.2 we discussed the first stage of the al- 
gorithm where we have N sensors and M sources. Now we 
put it all together following the source-iterative solution of 
Sec. 3 and discuss extraction of M sources including the 
cancellation of the extracted sources. We will use the su- 
perscript (m) to denote the various quantities pertaining to 
stage m. These have been used previously in Sees. 4.1 and 
4.2 without this superscript; e.g. C'm^(fc) now denotes the 
estimate of the tap-gain vector at time fc at stage m, etc. 
Initialization: 

Yll)(it)  =      as in (4-3) (4 - 28) 

DO FOR m ,M: 

c(m)(fc) = c(m)(fc-i) + Mi vc4m)(c(m)(*;-1)) 
(4-29) 

(4 - 30) ct~)(fc) =   g-K*) 
||C<"0(fc)|| 

where 
vc.4m)(c(m)(*0) = 

sgn(7ir))^jF { [»4r} (*(m)2(*) " *&) ^'W 

- (m&} - l^f) e(m)(*0] Y«*(fc)} ,   (4 - 31) 

«4r} = (1-^)^-1) + H*(m)(*oi2. (4-32) 

£&>  =  (1 - ri^L) + W«(m)a(*),     (4 - 33) 

4T}   = (I" Wjm^-D + Wl«(m)(*)l*.    (*-34) 
(m) (m) 

T4fc      =   m 4fc   -2m2r
)2-|mM|2 (4-35) 

and 

e(m)(fc) = C(m)T(fc)Y(m)(fc). (4-36) 



Set 
y*.m)(k) = FJm)T(Jfe)E(m)(fc) (4-37) 

where yf1 \k) represents (cf. (3-7)) the contribution of 
the extracted source at the m—th stage to the mea- 
surement at time k at the t—th sensor, and where 

("Of Fim>(fc) = Him'(fc)/mir'(fc) Am), (4-38) 

»Mr miT'Ct) = (i - »K7'(» - i) + wl"lm,(*)l ■ 
(4 - 39) 

E(m)(Jfe)= [ e^Jfc + LO    •■•    e(m>(fc-i2) ]T 

(4 - 40) 
and 

R(."0(fc) = (l-w)RJm>(fc-l) + W»im)(fc)E<m>*(k). 
(4 - 41) 

Define 

?^\k)=[yim\k)   •••   5im)(fc-L. + i)]T, 
(4 - 42) 

Set 

Y<m+1>(*) = [ Y<m+l>T(fc)    ••■    4m+l)TW f 
(4-43) 

where 

y/m+1>(fc) = Y}m\k) - ?}m\k). (4-44) 

ENDDO 
The sequence {e(m)(fc)} in (4-36) represents the equalized 

(up to a scale factor and time delay) source at stage m. 
Running Cost. To monitor the convergence of the equal- 
izers in various stages of the algorithm, it is useful to calcu- 
late a running cost (4-8) without the sign. Let j£m) denote 
the running cost for the m—th stage at time k, given by 

T("0   _ 
(m) ■Am),2 

("02 
(4 - 45) 

where 

m£>  =  (1 - pOmgL) + M4|e(m)(*0|2,        (4 - 46) 

«w?  =  0- - A»0^-D + "*e(m)2(*)' (4 - 4?) 

mi™> = (1 - MO™^) + f«l«(m)(*)|4- (4 - 48) 

For all of the simulations presented in Sec. 5, we took pi = 
0.002. 

5.    SIMULATION EXAMPLES 
5.1.     Example 1: 3 BPSK Sources and 7 Sensors 
We consider a wireless communications scenario with three 
(M = 3) BPSK user signals arriving at a uniform linear 
array of N = 7 sensors via a frequency selective multipath 
channel. The array elements are spaced half a wavelength 
apart. The array measurements are assumed to be sam- 
pled at baud rate (for simulation convenience only) with 
sampling interval T seconds and the three sources have the 
same baud rate. The relative time delay r (relative to the 
first arrival), the angle of arrival 8 (in degrees w.r.t. the 
array broadside) and the relative attenuation factor (am- 
plitude) a for various sources were selected as: 

t»i : (r,0,a) = (OT,lO°,O.5), (IT, 50°, 0.75) 

w2:  (r,Ö,a) = (OT,-20°,0.5), (IT, 45°, 0.45), 

(2T, 15°, -0.65) 

to,:  (r,0,a) = (OT,-35°,O.7), (IT,-5°, 0.4). 

Thus the signals wi and ws propagate through two paths 
whereas W2 passes through three paths. The signals arriv- 
ing at the array were normalized such that the signal powers 
for users 1 and 2 are equal, and 3dB higher than the sig- 
nal power for user 3. Additive white (both temporally and 
spatially) Gaussian noise was added to the array measure- 
ments to achieve a signal-to-noise-ratio (SNR) of 11.55dB 
(ratio = 100/7) for the strongest user(s). 

The proposed approach was applied with M — 3 equal- 
izers and M — 1 = 2 signal cancellers running in parallel, 
each successive equalizer put in operation after waiting for 
200 samples (symbols) w.r.t. the previous stage. The equal- 
izer length was chosen to be 5 taps per sensor (£« = 5 in 
(4-2)). The initial guess for the tap gains was taken to be 
center-tap initialization: set C{(2) = 1 for i = m for the 
m—th stage equalizer (m = 1, 2, 3) with the remaining tap 
gains set to zero. The algorithm step sizes and forgetting 
factors for each stage m were chosen as: fi\ = 0.003 in (4- 
29), ii2 = 0.015 in (4-32)-(4-34) and /i3 = 0.0005 in (4-39) 
and (4-41). For the running cost (4-45) computation we 
selected m = 0.002 in (4-46)-(4-48). The parameters Ly 
and L2 in (4-40) (see also (4-22) and (4-23)) were selected 
as Li = 15 and Z2 = 6. 

7 sensors, 3 BPSK sources 

(avergaed over 100 runs) 
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Fig. 1. Average running cost for Example 1. 

Fig. 1 shows the evolution of the average running cost 
j[m) (see (4-45)), averaged over 100 Monte Carlo runs af- 
ter 'assigning' each equalizer cost to its corresponding ex- 
tracted source. For BPSK sources the 4th-order normalized 
cumulant equals —2; therefore, at convergence, the running 
cost (4-45) should be close to -2. In Fig. 1 we see these 
values to be around —1.89 which is largely a consequence 
of noise in the data which affects only the denominator of 
(4-45) making it larger than it should be. Table 1 shows 
the signal-to-interference-and-noise ratio (SINR) and the 
probability of error Pe at the output of each equalizer at 
selected time instants, averaged over 100 Monte Carlo runs 
and 3000 symbols. [The equalizer tap gains at the cho- 
sen time instants were 'frozen' and used to equalize data 
of length 3000 symbols in order to calculate SINR and Pc. 
The equalized data were rotated, scaled and shifted before 
calculating the two performance measures.] It is seen from 
Fig. 1 and Table 1 that the proposed approach works well. 



5.2.     Example 2: 2 Mixed Sources and 5 Sensors 

In this example we consider a 4-QAM user signal w± (4th 
normalized cumulant as — 1) and a non-communications sig- 
nal vi2 consisting of an i.i.d. complex Gaussian-mixture (in- 
dependent and identically distributed real and imaginary 
parts with the real part being A/"(0,l) with probability 0.9 
and JV"(0,4) with probability 0.1) with 4th normalized cu- 
mulant as 0.7433 . The multipath channels for the two 
signals were selected as: 

wy.  (r,0,a) = (OT,10°,0.5), (IT, 50°, 0.75) 

w2: (T,8,OI) = (0T,-20°,0.5), (IT, 45°, 0.45), 

(2T, 15°, -0.65). 

The two signals have equal power. Additive white Gaussian 
noise was added to the array measurements to achieve an 
SNR of 13dB (ratio = 20) for each user signal. 

The proposed approach was applied with M = 2 equal- 
izers and M — 1 = 1 signal cancellers running in parallel, 
the second equalizer put in operation after waiting for 200 
samples. The equalizer length was chosen to be 5 taps per 
sensor (£«. = 5 in (4-2)). The initial guess for the tap gains 
was taken to be center-tap initialization: set C{(2) = 1 for 
i = m for the m—th stage equalizer (m = 1,2) with the 
remaining tap gains set to zero. The algorithm step sizes 
and forgetting factors were chosen as: ßi =■ 0.0005 in (4- 
29), a2 = 0.015 in (4-32)-(4-34) and in = 0.0005 in (4-39) 

and (4-41) when 7^ < 0 (see (4-35)), and pi = 0.0001 
in (4-29), u2 = 0.003 in (4-32)-(4-34) and /J3 = 0.0005 in 

(4-39) and (4-41) when 7^ > 0. The parameters L-, and 
Li in (4-40) were selected as Li = 15 and L2 = 6. For the 
running cost (4-45) computation we selected pi = 0.002 in 
(4-46)-(4-48). The counterparts to Fig. 1 and Table 1 are 
now shown in Fig. 2 and Table 2, respectively. 
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TABLE 1 

samples 
User 1 

SINR(dB)             Pc 

4000 
6000 
8000 

12000 

14.89 
15.03 
15.13 
15.14 

< 3 x 10-* 
< 3 x 10-* 
< 3 x 10-* 
< 3 x IQ-* 

User 2 
4000 
6000 
8000 

12000 

14.25 
14.81 
14.94 
14.97 

0.0099 
< 3 x 10-* 
< 3 x 10-* 
< 3 x 10-* 

User 3 

4000 
6000 
8000 

12000 

14.84 
15.13 
15.19 
15.23 

< 3 x 10-* 
< 3 x10-* 
< 3 x 10-* 
< 3 x 10"* 

TABLE 2 

#of 
samples 

Us 
SINR(dB) 

er 1 
Pe 

User 2 
SINR(dB) 

8000 
12000 
16000 

14.12 
14.79 
15.06 

0.0072 
< 3 x 10-* 
< 3 x IQ-* 

5.52 
9.28 
11.49 
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ABSTRACT 

The problem of blind equalization of SIMO (single-input 
multiple-output) communications channels is considered us- 
ing only the second-order statistics of the data. Such mod- 
els arise when a single receiver data is fractionally sampled 
(assuming that there is excess bandwidth), or when an an- 
tenna array is used with or without fractional sampling. 
We focus on direct design of finite-length MMSE (mini- 
mum mean-square error) blind equalizers. Unlike the past 
work on this problem, we allow infinite impulse response 
(IIR) channels. Our approaches also work when the "sub- 
channel" transfer functions have common zeros so long as 
the common zeros are minimum-phase zeros. Illustrative 
simulation examples are provided. 

1.    INTRODUCTION 

Consider a discrete-time SIMO system with N outputs and 
one input. The i-th component of the output at time k is 
given by 

yi[k) = Fi(z)w(k) + n(k),  i 

y(Jb)  = F(z)w(k) + n(fc) 

1.2. -,N,     (1-1) 

s(fc) + n(fc), (1-2) 

where y(fc) = [yi(fe) i y3(fc) : • • • ■yN{k)]T, similarly for s(fc) 
and n(fc), and z is the Z—transform variable as well as the 
backward-shift operator (i.e., z~lw{k) = w{k - 1), etc.). 
The sequence w(k) is the (single) input at sampling time 
k, yi(k) is the i-th noisy output, Si(k) is the i-th noise-free 
output, ni(k) is the additive measurement noise, 

is FIR with no common zeros among the various subchan- 
nels. A few (see [l]and [13], e.g.) have proposed direct 
design of the equalizer bypassing channel estimation. Still 
they assume FIR channels with no common zeros. 

In this paper we allow IIR channels. We will also al- 
low common zeros so long as they are minimum-phase. Fi- 
nally, in the presence of nonminimum-phase common zeros, 
our proposed approach equalizes the spectrally-equivalent 
minimum-phase counterpart of J~(z); it does not "fall 
apart" unlike quite a few existing approaches. We should 
note that our proposed approach is inspired by [1]. Unlike 
[1] our approach applies to antenna arrays since we do not 
require that /i(0) # 0 but /i(0) = 0 for i = 2,3, • • •, N (as 
in [1]). 

2.    PRELIMINARIES 

2.1.    FIR Inverses 
Let F(z) = A~\z)B{z) where A{z) = 1 + J£i «*"* is 

1 x 1 and ß(z) - Y,Zo BiZ~{ is N x L Assume 

(HI) N> 1. 
(H2) Rank{ß(z)} = 1 Vz including z = oo but excluding 

z — 0, i.e., ß(z) is irreducible [7, Sec. 6.3]. 
(H3) A{z) / 0 for \z\ > 1. 

It has been shown in [6] (using some results from [2]) that 
under (Hl)-(H3) there exists a finite degree left-inverse 
(not necessarily unique) of 3~(z): 

g{z)T{z) = 1 (2-1) 

where Q(z) is 1 X N given by 

H*) ■■= X>z" (1_3) Q(z) = yGiz  '  for any   Le >na+nb — 1.     (2 — 2) 

and Fi(z) = ^2^1Q /i(0
z ' >* t^le scalar transfer function 

with w(k) as the input and yi(k) as the output; it represents 
the t—th subchannel. We allow all of the above variables 
to be complex-valued. 

Such models arise in several useful baseband-equivalent 
digital communications and other applications. A case of 
some interest is that of fractionally-spaced samples of a 
single baseband received signal leading to a SLMO model 
a[4],[8]. Alternatively, a similar model can be derived 

en we have a single signal impinging upon an antenna 
array with N elements [5]. A similar model arises if we have 
an antenna array coupled with fractional, sampling at each 
array-element [5]. In these applications one of the objectives 
is to recover the inputs w(k) given the noisy measurements 
but not given the knowledge of the system transfer function. 
An overwhelming number of papers (see [4],[5],[9]-[12] and 
references therein) have concentrated on a two-step proce- 
dure: first estimate the channel impulse response (IR) and 
then design an equalizer using the estimated channel. A 
fundamental restriction in these works is that the channel 

This work was supported by NSF Grant MIP-9312559 and 
by ONR Grant N00014-97-1-0822. 

Remark 1: The left-inverse Q{z) of T(z) consists of 
two parts: Q{z) - GB(Z)A(Z) where </u(z)ß(z) = 1 so 
that Q{z)T{z) = GB(Z)A(Z)A-

1
(Z)B(Z) = gB{z)B(z) =1. 

Finite length left-inverses of FIR SIMÖ channels have been 
subject of intense research activities [4]-[6],[8]-[13]. 

2.2.    Linear Innovations Representations 
Assume further the following: 

(H4) {w(k)} is zero-mean, white. Take E{\w(k)\2} = 1. 

Lemma 1. Under (Hl)-(H4), {s(fc)} may be represented 
as 

s(fc) = -VDis(fc-t) + !.(*) 
i=i 

(2-3) 

where M = na+rib — l, D;'s are some N X.N matrices such 
that det(X>(z)) ^ 0 for \z\ > 1, V{z) = I + X^ DiZ^ 
and {/3(fc)} is a zero-mean white N x 1 random sequence 
(linear innovations for {s(fc)}) with 

£{!.(*)/?(*)} = FoF?  and  ||F„| 
2F?I,(k)=w{k) 

(2-4) 



Proof:   Consider the process 

s'(fc) := .4(*)s(Jb) = B(z)w(k). (2 - 5) 

By [9] and [14], under (HI), (H2) and (H4), we have 

nb-l 

s'(fe) =  -£)D{s'(k-i) + /:(*) (2-6) 

where DJs are some N xN matrices such that det(X>'(z)) ^ 

0 for |z| > 1, V'{z) = / + £!=! H'iZ-1 and {I',(k)} is a zero- 
mean white N x 1 random sequence with 

E{l',(k)l',n(k)} = F0F™ and HFoll^F^J^fc) = w(k). 
(2 — 7) 

Since s(fc) = A-1(z)s'(k), it follows from (2-6) that (2-3) 
holds true with I,(k) = I',(k) such that V{z) = A{z)V\z). 
This completes the proof.     O 
Lemma 2. Let TI„L. denote a [N(Lt + 1)] x [N(Le + 1)] 
matrix with its ij-th block element as R„,(j-i) = E{s(k + 
j-i)sn(k)}. Then under (Hl)-(H4), p(fc„i.) <NLC + 1 
for Lc > na + ras - 1 where p( A) denotes the rank of A. • 
Sketch of proof:   It follows from Lemma 1 and (2-3) that 

[ I    Dt D '"a+tb-l 0 ]TI„L. 

FoFj m (2-8) 

Apply Sylvester's inequality [7, p. 655] to (2-8) to deduce 
the desired result.    Ü 

3.    BLIND EQUALIZATION: NO COMMON 
ZEROS 

Assume that (Hl)-(H4) hold true. In addition assume the 
following regarding the measurement noise: 

(H5) {n(fc)} is zero-mean with £{n(k + r)nH(k)} = 
ciUjVxAT where JNXJV is the N x N identity ma- 
trix. 

3.1.     Zero-Delay Zero-Forcing Equalizer 
Using (1-3), (2-1) and (2-2), we have 

OO 

EG-'F< = {I: 
m = 0 
TO= 1,2,-" 

leading to 

[Go    Gt     ■■•    Gx,. ]S = [ 1    0    •■■ 

where S is the (N(L<. + 1)) x oo matrix given by 

5 = 

Fo    Fi    F2    F3 
0     Fo    Fi    F2 

0       0      •■•      0 Fi 

(3-1) 

(3-2) 

(3-3) 

Let 5* denote the pseudoinverse of 5.   By [15, Prop. 1], 

5* = SW(S5H)#.   Then the minimum norm solution to 
the FIR equalizer is given by [15, Sec. 6.11] 

[Go    d    ■••    GL. ]=[ F*    0    .-    0 }(SSH)*. 
(3-4) 

In a fashion similar to TJ-asi,. in Lemma 2, let TlyyL. 
denote a [N{Le + 1)] x [N(LC + 1)] matrix with its tj'-th 

block element as Ryy(j-i) - E{y(k + j -i)yn(k)}; define 
similarly TlnnL. pertaining to the additive noise. Carry out 
an eigendecomposition of TlyyL. • Then the smallest N — 1 
eigenvalues of TlyyL. equal o\ because under (H1)-(H4), 
P{TI„L.) < NLe + 1 whereas p{TlnnL.) = NLC + N = 
p{TlyyL.)- Thus a consistent estimate S^ of o\ is obtained 
by taking it as the average of the smallest N — 1 eigenvalues 
of llyyL , the data-based consistent estimate of TlyyL.- 

Under (H4) and (H5), 

(5 5     )   =   Tl, ji,    =   TlyyL. — TlnnL.    =   TlyyL.   —   CT-n.1 ■ 
(3 ^ 5) 

Thus, (S S ) can be estimated from noisy data. However, 
we don't know Fo- To this end, we seek an N x N FIR 
filter Qa{z) := £fj„ Gaiz~{ satisfying 

[ Ga0    Gol    ■••    GaL.] = [Irrxit    0    •••    0 ]H*.Lm. 
(3-6) 

Comparing (3-4) and (3-6) it follows that 

[Go      Gx      • • •      GL.   ] = ¥%[   Ga0      Gal      • ■ •      Gal,.   ] 
(3-7) 

leading to 

L. 

y,Gi*-i =: 9(z) = F?Qa{z). 
t'=0 

(3-8) 

In practice, therefore, we apply Ga.(z) to the data leading 
to 

v(Jb) := Qa(z)y(k) = v.(fc) + e«(*)n(fc) (3 - 9) 

such that 
F?v.(Jb) = to(fc) (3-10) 

where 

v.(Jb) := Qa{z) [y(fc) - n(fc)] - Qa(z)s(k).        (3-11) 

In (3-10) {w(k)} is a white scalar sequence (by as- 
sumption (H4)), however, {vs(fc)} is not necessarily a 
white vector sequence. Given the second-order statistics 
of {v,(fc)}, how does one estimate Fo so that {w(k)} sat- 
isfying (H4) is recovered? We need to have RWw(r) := 
E{w(k + r)w'{k)} = 0 for \r\ # 0. By (3-9), Rww(r) = 
FO

<
ä,,,,(T)FO. Define (L > 0 is some large integer) 

Rv.v,   :=   [J£„.(-1)  <„(-2)   •••   Rv.v,(-L)]T 

(3-12) 
where Ä„.„,(r)j= E{\.(k + r)v™(*)}. 
Lemma 3.      Rv,v. is rank deficient for any L > 1 such 

that Äv,„,Fo = 0.    • 
Proof:   We have 

iU,(T) = BHHr)v*(t)} = 0   Vr>l       (3-13) 

because v„(k) is obtained by causal filtering of y(fe), hence 
of w(k). Using (3-10) in (3-13) it then follows that there 
exists a N x 1 F0 / 0 such that F%RV,V,{T) = 0 Vr > 1. 
Equivalently (since Rv,v,(—r) — RVtVt{r)) 

RV,V,(-T)FO = 0   VT>1. (3-14) 

The desired result is then immediate.    G 
Pick  a N x 1  column-vector   H0   to  equal  the  right- 

most right singular vector in a singular-value decomposition 



(SVD) Rv,v. = UT,Vn, i.e. the right singular vector cor- 
responding to the smallest singular value. In other words, 
pick Ho to equal the last column of V. Then since ide- 
ally the smallest singular value of Rv,v, is zero, we have 
H?Ä.,.,WHo = 0 for r = 1,2, •■•,£. Since the over- 
all system with w(k) as input and Hjiv,(fc) as output is 
ARMA(ntt,7i6 + £e), it follows that H^v^fc) is zero-mean 
white if L > Tib + Le, hence, a scaled version ofw(k). There- 
fore, we have (a ^ 0) 

H^v^ifc)  =:  w'(k) = aw(k) (3-15) 

(because Ä„(„,H0 = 0). Thus, once Ho is found, one has 
the complete inverse niter to recover a scaled version of 
w(k) via a zero-forcing filter. 

Remark 2: Fo can also be estimated (up to a scale 
factor as unit norm Ho) using the prediction error method 
of [9],[14] (even though [9] and [14] restrict their discussion 
to FIR models and real-valued data). Using (2-3) we obtain 
(Lc > na+nb - 1) 

[ Di    •••    DI( ]K..L. = -[ a..(i) 

leading to the minimum norm solution 

[ Dr     •■■    Di,. ] = -[ R..(l)    ■■■ 

H...(£.) ] 
(3-16) 

■    H...(I.) ]-R*Mttm. 
(3 - 17) 

Note that if Lc > na + nb - 1, then D; = 0 for all i > 
na + nb - 1 by Lemma 2. By (2-3)-(2-4) we have 

£. 

RJJ(0) = FoF? = R„(0) + 5^ DiR„(-0.      (3 - 18) 

Clearly p(R33(0)) = 1. Carry out an eigendecomposition 
of Ru(0). Pick Ho as the unit norm eigenvector corre- 
sponding to the largest eigenvalue (ideally the only nonzero 
eigenvalue) of Rjj(0).    D 

Remark 3: It is worth noting that although Fjiv3(fc) = 
w(k) (see (3-10)) and ||F0||

-aFS<J.(Ä:) = w(fc) (see (2-4)), 
{i,(Jfc)l is zero-mean white (linear innovations) whereas 
{Vj(it)} is in general colored.    D 

3.2.    MMSE Equalizer with Delay d 
We wish to design an MMSE linear equalizer of a specified 
length.  Using the orthogonality principle [16], the MMSE 
equalizer of length Le + 1 to estimate w(k — d) {d > 0) based 
upon y(n),   n = k, k — 1, • • •, k — Lc, satisfies 

G dfi 

F?_ 

Gd,i 

F* 

'd,L. — 

o \n. yyL, (3 - 19) 

where RyyLe has its ij-th block-element given by R.yy(j - 
i). Clearly one can obtain a consistent estimate of ltVVL. 
from the given data. It remains to estimate Fi's to complete 
the design. Here the discussion of Sec. 3.1 becomes relevant. 
There we found a H0 to satisfy (3-15). From (3-9) and (3- 
15) we have 

.      B?v.(k) = 2 H?G«,-s(n - t). (3 - 20) 

Using (1-2), (3-15) and (3-20), we have 

F? = a-1H2iX;G(liR«(r + i)- (3-21) 

Let nd,„L. denote a [N(Le +1)] x [N(Le +1)] matrix with 
its ij'-th block element as E{s(k + d + j — t)sw(fc)}. Using 
(3-6) and (3-21) in (3-19) we obtain the desired solution 

[ Gd,o    Gd,i G d,L. 

= a-
ln?[iNxN  o   ...   o}nfsLnZsLn;^. 

(3 - 22) 
A scaled MMSE estimate of w(t — d) is then given by 

X-« 

u(t-d) = Y^aGd,iy(t-i)- (3 - 23) 

1=0 

3.3.    Summary of Algorithms 
Given data y(k), k = 1, 2, • ■ -, T. Pick the length Lc f 1 
and delay d of the MMSE equalizer. Estimate all correlation 
functions by sample averaging. 

3.3.1. ALGORITHM I: 
Here Fo is estimated as the unit norm Ho that lies in 

the null space of Rv,v,- Estimate noisefree correlations via 
(3-5). Use (3-22) and (3-23) for MMSE equalizer design. 

3.3.2. ALGORITHM II: 
Here Fo is estimated as in Remark 2. The rest is as in 

ALGORITHM I. 

3.3.3. ALGORITHM III: 
Here we will use (3-19) with F,- (i = 0,1, • • •, d) estimated 

using the basic approach of [9] and [14]. Although [9] and 
[14] derive all their results under the assumption of FIR 
channels with no common zeros, their results extend (with 
straightforward modifications) to models that satisfy (Hl)- 
(H5) by virtue of Lemma 1. 

4.    BLIND EQUALIZATION: COMMON ZEROS 

4.1.     Minimum-Phase Zeros 
Here the SIMO transfer function is 

T{z) = [Bc(z)/A(z)]B(z) (4-1) 

where ß(jz) satisfies (H2) and Bc(z) is a finite-degree scalar 
polynomial that collects all the common zeros of the sub- 
channels. Assume that 

(H6) Given model (4-1), Bc(z) ^ 0 for \z\ > 1. 

Then while A~l(z)B(z) has a finite inverse, B~l(z) is IIR 
though causal under (H6). Then (3-2) holds true approx- 
imately for "large" Lc, the approximation getting better 
with increasing £«. Similarly Lemma 1 holds true approx- 
imately for "large" M and Lemma 2 also holds true ap- 
proximately for Lc > M. It is then readily seen that the 
developments of Sees. 3.1, 3.2 and 3.3 are applicable. 

4.2.    Arbitrary Zeros 
s case (4-1) is true 

satisfy (H6). We may rewrite (4- 

T{z) = T{z)TAP{z) (4-2) 

where TAP(Z) is an allpass (rational) function such that 

Be(z)Bc{z-1) = FAp(zJBMp(z) (4-3) 

and ßjup(z) is minimum-phase. Thus (within a scale fac- 
tor) we have 

F(z)  =   [BMP(Z)/A(Z)] B(Z). (4 - 4) 

In this case (4-1) is true but Bc(z) does not necessarily 



We may rewrite (1-2) as 

y(k) = T(z)w'{k) + n(Jfe) where w'(k) := FAP(z)w(k). 

Clearly w'(k) satisfies (H4). Hence, (4-4)-(4-5) satisfy 
the requirements of Sec. 4.1. Therefore, one can "ap- 
proximately" recover w'(k) from the given data by ap- 
plying the algorithms of Sec. 3.3. In order to recover 
w(k) form w (fc), one needs to exploit the higher-order 
statistics of {w'(k)}\  see [2],[3] and references therein. 

Example 1, delay=3 
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Fig. 1. Normalized MSE after MMSE equalization with 
d = 3. Solid lines: T = 250 symbols, dashed lines: T = 
1000 symbols. 

5.    SIMULATION EXAMPLES 

5.1.     Example 1. 

We have N = 3 in (1-2) with T{z) = A~1(z)B{z) where 

^(z) = (l-0.5z-1)73 (5-1) 

and ß(z) is 3 x 1 MA(6) obtained from [10] as follows. Con- 
sider a raised cosine pulse pe(t, 0.1) with a roll-off factor 0.1, 
truncated to a length of 6T, (T, — symbol duration). As in 
[10], a two-ray multipath channel with (effective) impulse 
response h(t) — p6(i, 0.l)-0.7p6(i-Ta/3, 0.1) was sampled 
at intervals of T3/3 (starting at t = —3T3) to create the B(z) 
above. Transfer function B\z) satisfies (H2) [10], therefore, 
there exists a finite left inverse of length Lc = 6 (cf. Sec. 
2.1). The scalar input w(k) is 4-QAM. An MMSE equalizer 
of length Lc — 8 (9 taps per subchannel, totaling 27 taps 
 overfitting) was designed with a delay d =3 (arbitrarily 
selected just for illustration). The Algorithms I—III were 
applied for record lengths T = 250 and 1000 symbols with 
varying SNR's. Fig. 1 shows the normalized MSE (MSE 
divided by S{|ij)(A;)|2}). It is seen that the proposed de- 
sign approach can handle IIR channels with little difficulty. 
Algorithm I (newly proposed) performs the best. 

5.2.     Example 2. 
Again we have N = 3 in (1-2) but with T{z) = Bc{z)B{z) 
where B(z) is as in Example 1 and Bc(z) is a scalar poly- 
nomial given by 

Bc(z) =  1 - 0.5z" (5-2) 

Thus all three subchannels have a common zero at 0.5. 
The input w{k) is 4-QAM as in Example 1. Note that 
in this example a finite left inverse does not exist. As in 
Example  1,  an MMSE equalizer of length Le =  12 was 

designed with a delay d =3. Fig. 2 shows the normal- 
ized MSE averaged over 100 Monte Carlo runs. It is seen 
that the proposed design approaches can handle subchan- 
nels with common minimum-phase zeros with little diffi- 
culty.   As in Example 1, Algorithm I performs the best. 

Example 2, delay=3 
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Fig. S. Normalized MSE after MMSE equalization with 
d = 3. Solid lines: T = 250 symbols, dashed lines: T = 
1000 symbols. 
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ABSTRACT 
This paper is concerned with the problem of blind separa- 

tion of independent signals (sources) from their linear con- 
volutive mixtures. The various signals are assumed to be 
linear non-Gaussian but not necessarily i.i.d. Recently an 
iterative, normalized higher-order cumulant maximization 
based approach was developed using the fourth-order nor- 
malized cumulants of the "beamformed" data. A byprod- 
uct of this approach is a decomposition of the given data at 
each sensor into its independent signal components. In this 
paper an adaptive implementation of the above approach 
is developed using a stochastic gradient approach. Some 
further enhancements including a Wiener filter implemen- 
tation for signal separation and adaptive filter reinitializa- 
tion are also provided. A computer simulation example is 
presented. 

1.    INTRODUCTION 

Given noisy measurements yi(k), (t = 1,2, —, N), at 
time k at N sensors, let these measurements be a lin- 
ear convolutive mixture of M source signals Xj{k), (j = 
1,2,---,M): 

M 

yi(k) = Y^Vn{z)xj(k) + m(k),  i = 1,2,••-,#, 
i=i 

=^    y(k) = Z/(z)x(fc) + n(fc), (1 - 2) 

where   ij-th    element    of   U{z)   is    Uij(z),    y(fc)     = 

[yi(k)-y2(k):---\yN(k)]T, similarly for x(fc) and n(fc), 
z_1 is both the backward-shift operator (i.e., z~xx(k) = 
x(k — 1), etc.) as well as the complex variable in the 
Z—transform, xj(k) is the j-th input at sampling time k, 
yi(k) is the i-th output, m(k) is the additive Gaussian mea- 
surement noise, and Uij(z) := £^0 Uij(/)z~J is the scalar 
transfer function with xj(k) as the input and yi{k) as the 
output. We allow all of the above variables to be complex- 
valued. 

Suppose that we design a MIMO dynamic system £(z) 
with N inputs and M outputs such that the overall M x M 
system 

T(z) := £(z)U(z) (1-3) 

decouples the source signals. Following the 2x2 case con- 
sidered in [4], this implies that we must have (Tij(z) denotes 
the ij—th element of T(z)) 

Tij(z)    =0    for    i/v 
^0    for    i = ij (1-4) 

where t = 1,2, • ■ ■, M; j = 1,2, ■■■,M and ij £ 
{1,2, • • •, M} such that ij / ii for j / I. That is, in every 
column and every row of T(z) there is exactly one non-zero 
entry. In a blind separation problem, the nonzero entries 
of T(z) are allowed to be a scalar linear system (shaping 

This work was supported by NSF Grant MIP-9312559 and 
by ONR Grant N00014-97-1-0822. 

filter), unlike the equalization problems where they must 
be constant gains and/or pure delays. 

The problem considered above arises in a wide variety of 
applications: array processing, speech enhancement ("cock- 
tail party" problem), and noise cancellation, see [1]-[12] and 
references therein. The prior work done can be classified 
into two broad categories based upon the underlying propa- 
gation model: instantaneous mixtures and convolutive mix- 
tures. The general model (1-2) represents a linear convolu- 
tive mixture. The work reported in [4], [7] and [11] (and ref- 
erences therein) deals with linear convolutive mixture (dy- 
namic mixing) models. Past work on separation of convolu- 
tive mixtures may be categorized into several classes: time- 
domain approaches ([7], [8], [9], [10]), frequency-domain ap- 
proaches ([4],[11]), adaptive (recursive) approaches ([7], [9], 
[10]) and non-recursive (batch) approaches ([4], [8], [11])- 
In this paper we present time-domain adaptive approaches. 
Quite a few of existing approaches are limited either to 
M = N = 2 ([4], [9]) or to M = N ([7]). Although [11] 
treats a general case, their analysis is restricted to the case 
of two sources (M = 2). In this paper we consider a general 
case of N > M with M arbitrary. 

2.    MODEL ASSUMPTIONS 

We impose the following conditions on model (l-l)-(l-2): 

(AS1) N > M (at least as many outputs as inputs). 
(AS2) The vector sequence {x(fc)} is stationary, its var- 

ious components are mutually independent, and 
U(z) is stable. Moreover, {x(fc)} is linear, i.e. 

x(fe)  =  V(z)w(fc), (2-1) 

where {w(fc)} is a zero-mean, M—vector station- 
ary non-Gaussian process, temporally i.i.d. and 
spatially independent, with nonzero fourth cumu- 
lants. Because of the mutual independence of the 
components of x(fc), we take V(z) to be diagonal. 

(AS3) Consider the composite system 

y(jb) = :F(z)w(fc)+n(Jfc),   with  T{z) := W(z)V(z). 
(2-2) 

Assume that rank{.F(z)} = M for any |z| = 1. 
(AS4) Since the composite system is causal, we have 

oo IJ 

l=o 1=0 

(AS5) The noise {n(fc)} is a zero-mean, stationary Gaus- 
sian sequence independent of {w(fc)}. 

Let .F(i)(z) denote the t-th column of T{z). In blind 
convolutive signal separation we are interested in decom- 
posing the observations at the various sensors into its inde- 
pendent components. That is, our objective is to estimate 
T^i){z)wi{k) for i = 1,2, ■ • •, M given {y(k)} without hav- 
ing a prior knowledge of F{z). Denote the ij—th element 
of T(z) as Fij(z). 
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3.    A BATCH SOLUTION [8] 

In this section we briefly discuss the batch (non-recursive) 
approach of [8]; its adaptive version is developed in Sec. 
4. Let CUM4(w) denote the fourth-order cumulant of a 
complex-valued scalar zero-mean random variable w, de- 
fined as 

CUMUH = E{\w\*} - 2[£{|H2}]2 - \E{w2}\2.   (3 - 1) 

Consider anlxif row-vector polynomial equalizer (filter) 
CT(z), with its i-th entry denoted by Cj(z), operating on 
the data vector y(k). Let the equalizer output be denoted 
by e(Jfe): 

N 

i=l 

(3-2) 

(3-3) 

Following [6] consider maximization of the cost 

_   |CUMt(e(fc))| 
:-    [E{\e(k)\>W 

for designing a linear equalizer to recover one of the inputs. 
It is shown [6] that when (3-3) is maximized w.r.t. C(z), 
then (3-2) reduces to 

e(k) =  dwjo(k-k0), (3-4) 

where d is some complex constant, ko is some integer, jo 
indexes some input out of the given M inputs. 

An source-iterative solution is given by [8]: 
Step 1. Maximize (3-3) w.r.t. C(z) to obtain (3-4). 
Step 2. Cross-correlate  {e(A:)}  (of (3-4)) with  the given 

data (2-2) and define a possibly scaled and shifted 
estimate of fij0(r) as 

IlJ°[■  >  — £{|e(fc)|2} V 

where Fij{z) = E"-co /o(0z"'- Consider now 
the reconstructed contribution of e(fc) to the data 
yi(k) (i = 1,2, • ■ •, N), denoted by yi,j0(k): 

fc Jo (*)==£&.> (')«(*-*)■ (3-6) 
i 

Step 3. Remove the above contribution from the data to 
define the outputs of a MIMO system with N out- 
puts and M — 1 inputs. These are given by 

y'i(k) := yi{k)-yiljo(k). (3-7) 

Step 4. If M > 1, set M <- M - 1, yi{k) <- y'i(k), and go 
back to Step 1, else quit. 

It has been shown in [6],[8] that 

i.e., we have decomposed the observations_at the various 
sensors into its independent components: yi,j0(k) in (3-8) 
represents the contribution of {wj0(k)} to the i-th sensor 
achieving blind signal separation. It has been shown in 
[6] that under the conditions (AS1)-(AS4) and no noise, 
the proposed iterative approach is capable of blind identifi- 
cation of a MIMO transfer function T{z) up to a time-shift, 
a scaling and a permutation matrix provided that we allow 
doubly-infinite equalizers. 

4.    ADAPTIVE ALGORITHM 

In this section we develop a stochastic gradient-based "re- 
cursification" of all of the batch optimization steps dis- 
cussed in Sec. 3. We will use the superscript (m) to denote 
the various quantities pertaining to stage m of the batch al- 
gorithm of Sec. 3 (i.e. m-th execution of Steps 1-4 therein). 
Let the length of the equalizer C(z) be Le and let 

d(z)  =    £ Ci{l)z-1. (4-1) 

Initialization:     Define 

Yi(k) = [ yi{k)    •••    Vi(k-L. + 1) f, (4-2) 

Y^(k)=[Y?(k)    ...    ^(fc)]T, (4-3) 

y(1)(*) = y(fc). (4-4) 

DO FOR m = 1,2,- ■■,¥: 

C(m)(fc) = dm)(fc - 1) + MX 7c. 4m)(c(m)(fc - 1)) 
(4-5) 

C(m)(Jfc) = C(m)(Jfe)/||C(m)(fc)|| (4-6) 

where 

VC.4m)(C(m)(fc))  =  -gn(7ir,)-R5- 

x{[m^(e^(k)-^)e^\k) 

- (raff - Im^'l2) e^\k)] Y<m>*(*)} , (4 - T) 

4r'  =  (1 - wKS-o + M2|e(m)(fc)|2, (4 - 8) 

m£>   =  (1 - W)^_0 + ^W(k), (4 - 9) 

mir'  =  (1 - HMTL) + ^|e<"°(A0|\ (4 - 10) 

7£>   ^W-J^f-I^'l' (4-11) 
and 

Set 

e<m)(ife)  =  C(m)T(it)Y(m)(fc). (4-12) 

fm\k) =     £   Ft\k)e^\k-n) (4-13) 
n=— L\ 

where y (fc) represents (cf. (3-6)) the contribution of the 
extracted source at the m-th stage to the measurements 
at time k, and where (n = —£i, —L\ + 1, • • •, £2) 

F<T>(Jfe) = R(,T>(fc)/mi?>(*), (4-14) 

m£>(fc) = (l-^JmiT^-lJ + ^le^C*)!8. (4~15) 
'(k-7l) 
(4-16) 

Ri™\k)  = (1 - ßz)R^\k - 1) + ß3y
{m\k)e^'(k - n) 

IA Iß) 

and 
„("l+1)('L\   _   v( 

:("»), 
'(*) = y{m)W - y   (*)• (4-IT) 

Define 

^m)W=[5im)(Jfe)   ■••   yim)(k-Le + i) f 
(4-18) 



where yim\k) denotes the i-th component of y(m)(fc). Set 

Y<m+1>(fc)=[ Y{m+l)T(k)    ■••    ^m+1)T(fc) ]T 

(4-19) 
where 

Y{m+1)(k) = y/m)(fc) - ?/m)(fe). (4-20) 

,=(m), 
ENDDO 

The sequence {y' '(&)} in (4-13) represents the contri- 
bution of the extracted source at the m—th stage to the 
measurements at time k. Variable e(m)(fc) in (4-12) cor- 

responds to (3-2), j£m) in (4-5) corresponds to (3-3), and 

VO^l"1' k *^e mstantaneous gradient, all at time k and 
stage m. In (4-5) pi is the update step-size and in (4-8)- 
(4-10) and (4-15)-(4-16), m and /i3, respectively, are the 
forgetting factors (> 0, < 1). 
Running Cost. To monitor the convergence of the equal- 
izers in various stages of the algorithm, it is useful to cal- 

culate a running cost with the sign. Let J^ denote the 
running cost for the m—th stage at time k, given by 

f(m)   _ (4-21) 

(4-8)-(4- where m^\ m[^ and m^ are computed s 
10) but with a smaller /J.2. 

5.    FURTHER MODIFICATIONS 

5.1.     MMSE Signal Separation 
5.1.1.    Non-recursive Processing 
A by-product of the solutions of Sees. 3 and 4 is the 

estimates of the system/channel impulse response. These 
estimates can be used to design MMSE estimators of 

J^{\z)wi(k) with a controlled delay d to obtain an "op- 
timum" performance (ignoring any effects of additive noise 

on the channel estimates). Let FJl) denote the t-th column 
of F;.  We wish to design a linear MMSE filter (equalizer) 

of length Le + 1 to estimate yu)(k - d) as y    (k- d) given 
y(2) for / = k, k - 1, • ■ ■, k - Lc + 1 where d > 0, 

y^(fc)  := ^\z)wj(k) = ^F^(fc-0,    (5-1) 

=(i) 
L.-y 

y\k-d) :=   £Giy(*-;). (5-2) 

Using the orthogonality principle,  the desired solution is 
given by 

[Go    •••    Gz,.-i ] = o-lj [ Hd    ■■■    Hd_x,. ]Tly^ 
(5-3) 

where llyy denotes a [NLC] X [NLe] correlation matrix with 
Kyy(j — i) as its ij-th. block element, 

h 

H«V(P) ~ EM* + P)yWW>.    Hd_p := £ F^F^. 
fc=0 

(5-4) 
In practice, we replace all the unknowns by their estimates. 
Also we design the equalizer only up to a scale factor by 
omitting a^j from (5-3). 

Remark 1. Selection of Delay d: In designing (5-2) the 
delay d was pre-determined. One may choose to select d 
via exhaustive optimization as detailed below. The MMSE 
when (5-2) is used can be expressed as 

J(d) = tiE{y{j\k-d)yu)H(k-d)} - J'{d)   (5-5) 

where 
J'(d) := <£,• trHTl-lHH, 

Hj    Hd_i    ■ ■ ■    Hj-t,  1 

(5-6) 

H := [ Hd    Hd_i     ■■■    Hd_z,e  J. (5-7) 

Since the first term on the right-side of (5-5) is independent 
of d, minimizing J(d) w.r.t. d is equivalent to maximizing 

5.1.2.    Adaptive Implementation 

Note that llyy does not depend upon the stage m of the 
algorithm of Sec. 4. Its computation can easily be recursi- 
fied by using the matrix inversion lemma: see Table 13.1 on 
p. 569 in [13]. Denote the data-based adaptive estimate of 

Hyl at time k as Vyy(k). Let B.[m)(k) denote the estimate 
of Hi at stage m and time k of the multistage algorithm of 

Sec. 4. Note that F{™\k) in (4-14) (see also (3-5)) denotes 

an estimate of FL'' for some i € {1, 2, • • •, M} (up to a scale 
factor and time shift). Therefore, from (5-2) and (5-5) we 
obtain the adaptive implementation at stage m; details are 
omitted. 

5.2.    Adaptive Filter Reinitialization 
In the source-iterative (multistage) approaches of Sees. 3 
and 4, any errors in cancelling the extracted sources from 
the preceding stages / = 1, 2, • • • ,m - 1 affect the perfor- 
mance at stage m. The only stage that is immune to this 
phenomenon is stage m = 1. A possible solution to alle- 
viate this error propagation from stage-to-stage is to use 
parallel stages where we still have M stages for M sources 
but they all operate directly on the given data record in 
parallel but with different initializations of the equalizers. 
The problem here is how to ensure that each stage con- 
verges to a distinct source. Here we propose to initialize 
the parallel stages using the results of the serial multistage 
implementation of Sec. 4 coupled with an MMSE solution 
similar to that of Sec. 5.1. For stage m = 1, there are no 
changes to the algorithm of Sec. 4. For stages m > 2, run 
the algorithm of Sec. 4 till the running cost (4-21) reaches 
a steady-state. Given the estimates of the subchannel im- 
pulse response at stage m, we can design an MMSE filter 
(in a fashion similar to Sec. 5.1.2) to estimate Wj(k — d) 
given y(l) for / = it, k - 1, ■ - •, k - Lc + 1. Let the extracted 

vij(k) at stage m be denoted by u/m)(fc). Mimicking Sec. 
5.1.2, a recursive MMSE solution at stage m and time k is 
given by 

i.-i 

^\k-d) :=   ^Glm)(fc)y(fc-i) (5-8) 

where 

[GTV) Gim)(fc) ••■ GELM] 

v{rn)H (k) 
J(m)K (k)        0        ■■•        0    )Vyy{k). 

(5-9) 

At stage m and time fc, S(m)(fc - d) is an MMSE estimate 

(with delay d) of e^m\k) for the parallel implementation. 

Note that C(z) = Efjo"1 Gim)(fc)z_i is the desired MMSE 
initializer. 



6.    SIMULATION EXAMPLE 

Take JV=3 and M=2 in (2-2) with 

^>(z) 
0.2 +0.8z-1 +0Az~2 

0.3z-1 - 0.6z~2 

0. 

JF<2>(z) : 

1.0 

0.6 

0.2 

-0.2 

-0.6 

-1.0 

0.5 - 0.3z"1 

-0.21z-1 - 0.5z-2 + 0.72z~3 + 0.36z-4 + 0.21z" 
0. 

Fig. 1. 
(Algorithm of Sec. 4, no reinitialization) 

■ 
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\>               * - 
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_. 1 ,                i.i. 

5000 10000 
no. of samples 

15000 

The input {wi(k)} is an i.i.d. complex Gaussian-mixture 
with 4th normalized cumulant as 0.7433 . The input 
{w2(k)} is an i.i.d. 4-QAM sequence with 4th normalized 
cumulant as —1. The additive noise is white, complex Gaus- 
sian. The powers of {vij(k)} were scaled so as to have 

E{\\T^(z)w,(k)\f} = E{\^(z)w2(k)\[2}. The perfor- 
mance measure was taken to be the signal-to-interference- 
and-noise ratio (SINR) per source signal, denned as 

SINR; E{\\yU)(k)\\ 

E{\\yU)(k) ■ «y0)(*)ll2} 
(6-1) 

where a is  that  value  of the scalar  or which  minimizes 

£{||y(i)(fc) - of ' (k)\\2}. The length of the inverse fil- 
ters was 11 samples per sensor (output) for the approach 
of Sec. 4. The initial guess for the tap gains was: set 
c;(5) = 1 for t = m for the m-th stage equalizer (m = 1,2) 
with the remaining tap gains set to zero. The algorithm 
step sizes and forgetting factors for each stage m were cho- 
sen as:   m = 0.0005, \i2 = 0.015 and /t3 = 0.0005 when 

7^ ^ ° (see C4"11)). and r^i = 0.00025, fi2 = 0.0075 and 

H3 = 0.0005 when 7^ > 0. For the running cost (4-21) 
computation we selected "u2"=0.002 in (4-8)-(4-10). The 
parameters Lx and L2 in (4-13) were selected as £1 = 15 
and L2 = 6. To design the MMSE equalizers/filters we took 
Le = 11 and d was optimized following Remark 1 of Sec. 
5.1.1 over the range [—15,6]. 

Fig. 1 shows the evolution of the average running cost 

j[m' (see (4-21)), averaged over 100 Monte Carlo runs (af- 
ter 'assigning' each equalizer cost to its corresponding ex- 
tracted source) without using any filter reinitialization. Fig. 

2 shows Jl"1' when reinitialization (after 12000 samples) 
of Sec. 5.2 is used. It turns out that source 1 (wi(k)) is 
extracted first, so that reinitialization only affects source 
2 (4-QAM). Table I shows the average SINR (based on 
100 runs) for the two sources at the end of the run (i.e. 
at k = 18000) without and with filter reinitialization, for 

various SNR's. The SINR's were computed using the so- 
lution (4-13) as well as the MMSE solution of Sec. 5.1.2. 
It is seen that blind signal separation benefits from both, 
MMSE signal separation as well as filter reinitialization. 

1.0 

0.6 

0.2 

Fig. 2. 
(Algorithm of Sec. 4 with reinitialization of Sec. 5.2) 
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TABLE I. Average SINR after blind separation. Se- 
rial: Algorithm of Sec. 4; Parallel: Algorithm of Sec. 4 + 
reinitialization of Sec. 5.2. 

SOURCE 1 (Gaussian mixture) 
SNR serial parallel 

(4-13) MMSE (4-13) MMSE 
25.2 dB 8.653 10.667 8.653 10.667 
18.2 dB 8.447 10.317 8.447 10.317 
12.2 dB 7.807 9.253 7.807 9.253 
5.2 dB 5.893 6.511 5.893 6.511 

SOURCE 2 (4-QAM) 
SNR serial parallel 

(4-13) MMSE (4-13) MMSE 
25.2 dB 11.621 12.647 16.123 15.271 
18.2 dB 11.198 12.134 15.078 14.351 
12.2 dB 9.876 10.591 12.445 12.070 
5.2 dB 6.505 6.862 7.746 7.626 
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ABSTRACT 

In several communications (and related) applications the 
underlying equivalent discrete-time mathematical model is 
that of a multiple-input multiple-output (MIMO) linear sys- 
tem where the number of inputs equals the number of users 
(sources) and the number of outputs is related to the num- 
ber of sensors and the sampling rate. The vector input 
sequence represents the information sequences of the vari- 
ous users. Existence of finite-length multi-step (including 
one-step) linear predictors plays a key role in blind identi- 
fication and equalization of multiple-input multiple-output 
(MIMO) systems. In this paper we first derive an upper 
bound on the length of a linear predictor for MIMO sys- 
tems with irreducible transfer functions. Then multi-step 
linear predictors for IIR/FIR MIMO channels are consid- 
ered. An upper bound on the length of the one-step pre- 
dictor is known for the case when the underlying MIMO 
transfer function is irreducible and column-reduced. When 
the MIMO transfer function is irreducible but not necessar- 
ily column-reduced, it is known that a finite-length linear 
predictor exists; however, its length has not been previ- 
ously specified in the literature. In past multi-step linear 
predictors have been considered in the literature only for 
single-input multiple-output models. 

1.    INTRODUCTION 

Consider a discrete-time IIR MIMO system with N outputs 
and M inputs: 

y(Jfe)  = ^(*)w(*) + n(fc)  = s(fc) + n(fc) (1) 

where y(fc) = [yi(k) \y2(k):--- :yN{k)]T, similarly for w(&), 
s(fc) and n(fc), z is the Z-transform variable as well as the 
backward-shift operator (i.e., z_1w(fc) = w(fc - 1), etc.), 
s(fc) is the noise-free output, n(fc) is the additive measure- 
ment noise and the N x M matrix T(z) is given by 

F{z) = A~\z)B{z) 

where 
a "   . 

A(z) = I + J2Aiz-i  and  B{z) =  J^Bi*-'.       (2) 

We allow all of the above variables to be complex-valued. 
The following assumptions are made regarding (l)-(2): 

(HI) N>M. 

(H2) Rank{ß(z)} = M Vz including z = oo but exclud- 
ing z = 0, i.e., B(z) is irreducible [5, Sec. 6.3]. 

(H3) Unobserved input sequence {w(fc)} is zero-mean, 
white. Take E{w(k)wH(k)} = JM by absorb- 
ing any non-identity correlation of w(k) into B(z) 
where IM is the M X M identity matrix and the 
superscript H is the Hermitian operator (complex 
conjugate transpose). 

(H4) {n(Jfe)} is zero-mean with E{n(k + r)nH(fe)}  = 
<rllN6(r). 

(H5) A(z) # 0 for \z\ > 1. 

Notations and Definitions: Let ß(I)(z) denote the 

I—th column of ß(z) such that ß^(z) = £)£„ B^z-' 
where L\ — deg (ß'!'(z)) = lowest degree of the polynomial 

ß(I)(z). By (2), Li < nb VZ. The polynomial matrix ß(z) is 

il *(!}:. iB(,M)] h M 
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said to be column-reduced if rank < [B 

[5]. Consider the Hilbert space W of square integrable 
complex random variables on a common probability space 
endowed with the inner product (for sealer complex ran- 
dom variables n and z2) < xi,x2 >= E{x!zZ} where the 
superscript * denotes complex conjugation (see [4]). Let 
Sp{xi 6 /} denote the subspace of H generated by the 
random variables/vectors in the set {z; £ /}. Given an 
N—variate s(fc) with i—th component si(fc), define the sub- 
space 

•fffc-miX>I1ia,-|i'w(s) : = 

Sp{ si(k - U),   m<k<Li;   t= 1,2, ■■-,#}. 

We will use Hk-m(s) to denote fffc-m;oo,--,«>(s). Let 
(s(fc)|fi'fc_i(s)) denote the orthogonal projection of s(fe) 
onto the subspace Hk-i(s) [4].    □ 

Models such as (l)-(2) with T(z) = ß(z) arise in several 
useful digital communications and other applications [1]- 
[3], [6]-[8] where one of the objectives is to estimate the 
multichannel impulse response {Bi} and/or to recoverthe 
inputs w(fe) given the noisy measurements but not given 
the knowledge of the system transfer function. One of the 
popular approaches is that using linear prediction [l]-[3] 
where existence of finite-length one-step linear predictors 
plays a key role. In the MIMO case it is known that under 
(H1)-(H3), finite-length one-step linear predictors exist for 
the process s(fc) [6],[7]. The length (or an upper-bound on 
it) has not been specified in [6],[7]. Under an additional 
condition that ß(z) is column-reduced, it is stated in [1] 
that there exists a linear predictor (for s(fc)) of length no 

longer than X)t=iJ^*' 
A one-step linear prediction-based approach was first pro- 

posed in [12] and later expanded upon in [2]. Unlike the 
subspace-based methods of [13], [14] and others (see also 



[3] and references therein), the linear prediction (LP) based 
approach of [12] and [2] turns out to be rather insensitive 
to the order of the underlying FIR channel (so long as one 
overfits). More recently, it has been pointed out in [15] 
and [16] that the LP-based approach can be further signif- 
icantly improved by utilizing some additional information 
not exploited by LP. Although [15] and [16] derive their 
algorithms in a quite a different manner, their final algo- 
rithms are essentially the same. In this paper we will follow 
the approach of [16] which is based upon multi-step linear 
prediction. Unlike [16] we allow multiple inputs and IIR 
channels. Unlike [15] we allow MIMO transfer functions 
that are not column-reduced and we also allow IIR chan- 
nels. 

2.    FINITE-LENGTH ONE-STEP LINEAR 
PREDICTORS FOR T(Z) = B(Z) 

By [5, Sec. 6.3] there exists an M X M unimodular matrix 
W(z) such that 

ß(z) = B(z)W(z) (3) 

where B(z) is column-reduced and W(z) is unimodular (i.e. 

det(W(z))  = constant).    Let W '(z) =  i-th column of 

B(z), I, = deg (&%)) and &%) = £fi0 BIV*. Let 

LW = deg (W(z)). Then 

p 

W~\z) = ^Wiz-*   where   p < (M - 1)L{W).    (4) 
i=o 

Define the [NK] X [K+Li\ generalized Sylvester matrix (a 
Toeplitz matrix) 

p+nb 

TK(&i]) = 

&o 

0 

BT n 
Li-1 

Bo 

n 
Bi* 

0 

0 

Br 
(5) 

Further define the [NK] x [MK + £?f t Li] matrix 

TK(B) := [ TK^)    TK^)    ■■■    TK$
M)) ] ■ (6) 

Set x(k) := W(z)w(k) so that s{k) = B(z)x(k). Then we 
have _ , „ 

SK(k) = TK(B)XK(k) (7) 

where SK(k) := [sT(k): ■ ■ ■ lsT(k -K + l)f and XK{k) := 

[xi(fc): • • • :si(fc - Li -K+l)\x7(k)\ ■ ■ ■ !x2(fc - L2 -K + l) 

:■■■ :xM(k): ■ ■ ■ \xM(k -LM-K + 1)]T (*;(*) is the i-th 
component of x(fc)).  It is known [9] (see also [5],[8]) that 

rank{TK(ß)} = MK + ££ I.- if K > E.^i **■ Th«e" 
fore, a left inverse to TK{B) exists. Hence, if if > £i=1 

Li< 
we have 

■Hk;K-l,K-l,",lC-l(s) = S'fc;K-+ii-i,K+i3-i,-,K'+rM-i(x) 
(8) 

Since x{k) = W{z)w(k), using (4) it follows that w(fc) = 
£[=0 Wix(k - i). Therefore, for some Cm's, we have 

s(fc|fc-l) := £ Biw(k-t) = J2Bi 
y 

Y^Wix(k-i-l) 

~ /_• Cmx(fc _m)- (9) 

Define    K0     :=     max {J2™i L^ n>> + ?}• It   K     > 
Ko,     then    s(k\k   -   1)      €      Hk-v,j>+nb,-,p+nb(x)      C 
H, 
exist A{'s such that 

fc-i:jr+L11...,JC+i;I,(
x) = Hk-v.K.-.K^)- Therefore, there 

s(Jfe|Jfe-l)  =   -^Ais(fc-i)- (10) 

Using (1), (2) and (9), we have 

s(Jfc)  =  s(fc|A:-l)+e(Jfe|A:-l)   where  e(A|fc-l) : = B0w(*:). 

By (H3) it foUows that E{e(k\k-l)sH(k-m)} - 0 Vm > 1. 
Hence, by the orthogonal projection theorem (OPT) [4], we 
have t(k\k - I) = (s(fe)|ff*_i(s)). But by (10) and OPT, 
we also have s(k\k - I) - (s(k)\Hk-v,K0,-,Kc,{s)). Thus, 
e(ifelfc — 1) is the linear innovations process of {s(fc)} [41. It 
remains to 'simplify' K0. By (3) and [5, Thm. 6.3-13] (the 
predictable-degree property of column-reduced matrices), 
it follows that L(w)  < nb and Li  < nb (1  <  I  < M). 

Therefore, p < (M - l)nb and Ylili Li ^ Mnt>- Hence> 
Ko < Mnb. The above discussion is summarized below. 

Theorem 1. | Under (Hl)-(H3), there exists an inte- 

ger K < Mnb and a polynomial matrix A(z) — IN + 
Y^=l Ä~iZ-i of degree K such that A(z)s(k) - e(k\k - 
1) = Bow(fc). The linear innovations process of {s(fc)} is 
{e(fc|fc-l)}.    • 

It follows from (1) and Theorem 1 that 

A~(z)s(k) = A~(z)B{z)w(k) = Bow(fc). (12) 

Since w(fc) is full-rank and white, it follows that 

A~{z)B(z) = Bo     ^     (Bf Bo) -1 BoA~(z)B(z) = IM- 
(13) 

Clearly    the    M   x   N    polynomial    matrix    Q{z)     := 

(Bo*Boy
l B"Ä~{z) is of degree K    <  Mnb and it is a 

left inverse to B(z). 

| Theorem 2. [ Under (H1)-(H3), there exists an integer 

K < Mnb and a polynomial matrix Q(z) = £;=0 G;z   * of 
degree K such that Q{z)B{z) = IM-    • 

In [8] we derived the upper bound on deg((7(z)) as (2M — 
\)nb — 1. Clearly Theorem 2 offers a better bound for M > 
2. 

3.    FINITE-LENGTH MULTI-STEP LINEAR 
PREDICTORS 

We now treat the general case T(z) = .4_l(z)ß(z).   We 
have 

oo 

T{z) = 53FiZ_i (U) 

s(fc) = - ^ Ais(k - 0 + £ Biw(fc - i). (15) 



It then follows from (15) that 

s(Jfe) = -^Ais(Jfc-t)-Ai 

+ V] B;w(fc - 1 - i) 
;=o 

n.+i 

-^Ais(fc-l-i) 

+ ^B;w(fc-i) 
i = 0 

"b + 1 

= - J] A2is(fc - i) + ^ B2iw(fc - i). (16) 
t=2 i = 0 

for some appropriate choices of the parameters (matrices} 
A2i's and B2i's. Now substitute for s(fc — 2) using (15) 
in (16), and continuing this way, we have, in general, for 
appropriate choices of Ai;'s and Bj;'s {I > 1) 

».+i-i nb+!-l 

s(k) = -   53   AKs(Jk-t)+   YJ   BKw(*-i)-    (IT) 
i=I i=0 

Both (15) and (17) represent the same signal/system and 
therefore, they must have the same impulse response. By 
(14), (15) and (17), it then follows that 

Bii  = Fi   for   0 < i < I - 1. (18) 

Let us rewrite (17) as 

s(fc) = e(*!|fc-0+s(*l*-Q (I9) 

where 

i-i i-i 

e{k\k - i) := 53 B«w(* - 0 = $3 FiW(fc ~ *)       (2°) 

and 

i+I-l »6 + 1-1 

s(fc|fc-0~-   J2   Ai;s(fc-i)+   53   B"w(*-0- (21) 

Theorem 3.   Under (H1)-(H3),  (H5),  and for /  = 
1, 2, ■ ■ ■, {s(k)} can be decomposed as in (19) such that 

E{e{k\k-l)sH(k-m)} = 0   Vm > 1, (22) 

s(k\k-l) = (s(fc)|flr
fc_,(s)) , (23) 

S(k\k - I) e ft-!;n,+Mn|,+l-lr-,«.+Min+l-l(s) (24) 

and 
s(k\k - I) 

= (s(i)|^k-I;n,+Mtn+I-l,-,Tv.+Wni+l-l(s))     •        (25) 

Proof:   By (1), (2), (14) and (H5), we have 

s(jfe)  = 53Fiw(*-0- 

By Theorem 2, it follows that 

53 Gis(fc - i)  = w(*0- 

(26) 

(27) 

Substituting for w(fc) from (27) in (21), it follows that 

s(k\k - I)  e JTfc_i(s). (28) 

By (26) and (H3), we have 

E{w(k)sH(k - m)}  =  0   Vm>0. (29) 

Therefore, using (20) and (29), it follows that (22) is true. 
By (19), (22), (28) and the orthogonal projection theorem 
[4], it follows that (23) is true (as the "error" e(k\k - I) 
is orthogonal to the data s(fc — m) (m > I), hence to the 
subspace Hk-i{s))- 

It remains to establish (24) and (25). Define 

s(Jb) := A(z)s(k) = ß(z)w(fc) 

= B(z)[W(z)v/(k)] = B(z)w(k) (30) 

where we have used (3). Using (30) and rewriting (8) in the 
notation of Sec. 3, if K > ]T)i=1 Li, we have 

Hk;K-i,-,K-i(s) = ^fc;iC+r1--l,..,K+rM-i(x)-       (31) 

It also follows from (30 ) that 

Hk;L,..,h{jk) C fffci».+L1....n. + Xl(8)    VX>0. (32) 

Therefore, for K > ^^ Li, 

Ek;K+Ll-l,-,K+1M-l(X) C Bhm + K-i,...,n.+K-l(B), 
(33) 

and in general, for any I > 0, 

Eu rfi-iW 

C ^fc-(;n1+K+l-l,-,n0. + Kr+!-l(s). (34) 

As in (9) we have 

nb + !-l p+nb + l-l 

53 B,iw(fc-o= 53 cix(fc-o   (35) 
i=l i=I 

for some Cm's. Therefore, it follows that 

ni + l-l 

53     Bnw(i-t) G-ff*-!;p+nb + l-l,-,p+Tn + l-l(x)     (36) 
t=! 

Cfffc_,iIC+r1+i-i,..1ir+r„+«-t(x)    f°*K>Ko     (37) 

C fi'fc-l;n.+ür+(-l,-,na+JC+I-l(s) (38) 

where,  as in Sec. 2,  Ko  :=  max{£\=1 i;, rat+p}.    It 
therefore follows from (21) and (38) that 

S(fc|fc-Z)   €   fl'fc-I;na+K-+I-l,--,na+K'+l-l(s)      V K > K0. 
(39) 

As in Sec. 2, Xo < Mnb. If we pick if = Mnb in (39), we 
obtain (24). Finally, (25) follows from (19), (22), (24) and 
the orthogonal projection theorem [4]. This completes the 
proof of Theorem 3.     □ 

It follows from Theorem 3 that 

x-i _ 

■s(fc|fc-Z) = -\~\Aus(k-i)  where   Li > na + Mnb + l-l, 

(40) 



for some N x N matrices Ai;s. By (19) and (22) (recall also 
the orthogonal projection theorem), we have 

s(k\k-l) = a.TS{minnk)€Hh_ds)E{\\S(k)-x(k)f}. 

Therefore, s(k\k — I) is the I—step (ahead) linear predictor of 
s(Jfe) given {s(m), m < k — I}. By (25^ it is also the /—step 
(ahead) linear predictor of s(k) given {s(m), k — Li <m< 
k — I}. 

It follows from (19) and (40) that 

e{k\k - 1) : = s(fc) + J2 AHs(k -i) = J2 FiW^fc ~ *)• (42) 

It follows from (42) that for I > 2, 

ed,i(k) := e(fe|Jb-J)-e(*|*-I + l) 

Define a [N x £]-vector (D > 1) 

F,_iw(*-1 + 1). 
(43) 

s(fc) 

e(Jfe|Jfe-l) 
ed,2(k + l) 

ed,D(k + D-l) 

Fo 
Fx 

w(i). 

(44) 
Following the SIMO FDR. channel results of [16], (44) can 
be used to to estimate the MIMO channel impulse response 
Ff for i = 0,1, • • •, D — 1 (for arbitrary D) up to a uni- 
tary matrix ([1]). [This unitary matrix requires higher- 
order statistics for its estimation [1].] Knowledge of Fj for 
i = 0,1, ■•■,D — 1 can be used to design MMSE equal- 
izer with lag D — 1 [10]. All of this relies on (H4} which 
allows determination of the noise variance from data by 
eigendecomposition of the data correlation matrix (which 
is discussed next). 

4.    ESTIMATION OF NOISE VARIANCE 

In practice, we have noisy measurements y(fc) of s(fc) 
whereas the preceding discussion and results are based upon 
availability of the correlation function of s(fc). Lemma 1 
below is useful in this regard. Consider the case of I = 1 
(one-step prediction). By (42) we have 

ii 

S(k) ■ "Y^ Ans(fc - i) + Fo-w(k). (45) 

If Li > na + Mnb, then Aj = 0 for i> na + Mnt by virtue 
of (25). 

Under (Hl)-(H3) and (H5), rank{fta5Ll} < Lemma 1. 
NLi + M for Ly  > na + Mnb where 11,^^ is [N(Li + 
1)] x [JV(Li + 1)] with its ij—th. block-element given by 
R„(j - 0 := E{s(k + j - i)sH(k)}.     . 
Sketch of proof:   It follows from (45) and the fact Fo = Bo 
that 

IN    AI An, ]n, BoB?    0 0 J 
(46) 

Clearly rank{[ 7^    Ai     •••    Ai,   ]} = N.    By (H2), 
rank{B0} = M = rank{B0Bo*}. The desired result then 
follows from (46) and the Sylvester's inequality [5, p. 655]. 
D 

In a fashion similar to TlssLi in Lemma 1, let TZyyLy 
denote a [N(Li + 1)] x [N(Li + 1)] matrix with its tj'-th 
block element as Ryy(j-i) — E{y(k + j-i)yH(k)}; define 

similarly 1lnnL1 pertaining to the additive noise. Carry 
out an eigendecomposition of li-yyL^- Then the smallest 
N — M eigenvalues of T^yyL^, equal crj; because under (Hl)- 

and (H5), rankK'fcjji,,} < NLx + M whereas under 
, rank^nnr,,} = NLx +N - ia.nk{nyyLl}. Thus 

a consistent estimate crj; of o\ is obtained by taking it as 
the average of the smallest N — M eigenvalues of HyyL1, 
the data-based consistent estimate o{TZyyi,l. The noise-free 
signal correlation function can then be estimated from the 
noisy-data correlations. 
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